Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 68

1.

High-resolution metabolic mapping of cell types in plant roots.

Moussaieff A, Rogachev I, Brodsky L, Malitsky S, Toal TW, Belcher H, Yativ M, Brady SM, Benfey PN, Aharoni A.

Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):E1232-41. doi: 10.1073/pnas.1302019110. Epub 2013 Mar 8.

2.

The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux.

Lehmann M, Schwarzländer M, Obata T, Sirikantaramas S, Burow M, Olsen CE, Tohge T, Fricker MD, Møller BL, Fernie AR, Sweetlove LJ, Laxa M.

Mol Plant. 2009 May;2(3):390-406. doi: 10.1093/mp/ssn080. Epub 2008 Dec 26.

3.

Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome.

Novák O, Hényková E, Sairanen I, Kowalczyk M, Pospíšil T, Ljung K.

Plant J. 2012 Nov;72(3):523-36. doi: 10.1111/j.1365-313X.2012.05085.x. Epub 2012 Aug 13.

4.

Fluorescence-activated cell sorting in plant developmental biology.

Iyer-Pascuzzi AS, Benfey PN.

Methods Mol Biol. 2010;655:313-9. doi: 10.1007/978-1-60761-765-5_21.

PMID:
20734270
5.

A gene expression map of the Arabidopsis root.

Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN.

Science. 2003 Dec 12;302(5652):1956-60.

6.

JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism.

Hassan H, Scheres B, Blilou I.

Development. 2010 May;137(9):1523-9. doi: 10.1242/dev.048777. Epub 2010 Mar 31.

7.

A comprehensive expression analysis of the Arabidopsis MICRORNA165/6 gene family during embryogenesis reveals a conserved role in meristem specification and a non-cell-autonomous function.

Miyashima S, Honda M, Hashimoto K, Tatematsu K, Hashimoto T, Sato-Nara K, Okada K, Nakajima K.

Plant Cell Physiol. 2013 Mar;54(3):375-84. doi: 10.1093/pcp/pcs188. Epub 2013 Jan 3.

PMID:
23292599
8.

Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root.

Miyashima S, Koi S, Hashimoto T, Nakajima K.

Development. 2011 Jun;138(11):2303-13. doi: 10.1242/dev.060491.

9.

Metabolite profiling of Arabidopsis seedlings in response to exogenous sinalbin and sulfur deficiency.

Zhang J, Sun X, Zhang Z, Ni Y, Zhang Q, Liang X, Xiao H, Chen J, Tokuhisa JG.

Phytochemistry. 2011 Oct;72(14-15):1767-78. doi: 10.1016/j.phytochem.2011.06.002. Epub 2011 Jul 2.

PMID:
21726880
10.

Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis.

Kong Y, Zhu Y, Gao C, She W, Lin W, Chen Y, Han N, Bian H, Zhu M, Wang J.

Plant Cell Physiol. 2013 Apr;54(4):609-21. doi: 10.1093/pcp/pct028. Epub 2013 Feb 8.

PMID:
23396598
11.

The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana.

Masucci JD, Rerie WG, Foreman DR, Zhang M, Galway ME, Marks MD, Schiefelbein JW.

Development. 1996 Apr;122(4):1253-60.

12.

Effects of AOX1a deficiency on plant growth, gene expression of respiratory components and metabolic profile under low-nitrogen stress in Arabidopsis thaliana.

Watanabe CK, Hachiya T, Takahara K, Kawai-Yamada M, Uchimiya H, Uesono Y, Terashima I, Noguchi K.

Plant Cell Physiol. 2010 May;51(5):810-22. doi: 10.1093/pcp/pcq033. Epub 2010 Mar 19.

PMID:
20304787
13.

Expression of the Beet necrotic yellow vein virus p25 protein induces hormonal changes and a root branching phenotype in Arabidopsis thaliana.

Peltier C, Schmidlin L, Klein E, Taconnat L, Prinsen E, Erhardt M, Heintz D, Weyens G, Lefebvre M, Renou JP, Gilmer D.

Transgenic Res. 2011 Jun;20(3):443-66. doi: 10.1007/s11248-010-9424-3. Epub 2010 Jul 3.

PMID:
20602166
14.

Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots.

Bednarek P, Schneider B, Svatos A, Oldham NJ, Hahlbrock K.

Plant Physiol. 2005 Jun;138(2):1058-70. Epub 2005 May 27.

15.

The protein expression landscape of the Arabidopsis root.

Petricka JJ, Schauer MA, Megraw M, Breakfield NW, Thompson JW, Georgiev S, Soderblom EJ, Ohler U, Moseley MA, Grossniklaus U, Benfey PN.

Proc Natl Acad Sci U S A. 2012 May 1;109(18):6811-8. doi: 10.1073/pnas.1202546109. Epub 2012 Mar 23.

16.

Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side-chain elongation steps of aliphatic glucosinolate biosynthesis.

Albinsky D, Sawada Y, Kuwahara A, Nagano M, Hirai A, Saito K, Hirai MY.

Amino Acids. 2010 Oct;39(4):1067-75. doi: 10.1007/s00726-010-0681-5. Epub 2010 Jul 10.

PMID:
20623150
17.

LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis.

Lee HW, Kim NY, Lee DJ, Kim J.

Plant Physiol. 2009 Nov;151(3):1377-89. doi: 10.1104/pp.109.143685. Epub 2009 Aug 28.

18.

Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development.

Gan Y, Bernreiter A, Filleur S, Abram B, Forde BG.

Plant Cell Physiol. 2012 Jun;53(6):1003-16. doi: 10.1093/pcp/pcs050. Epub 2012 Apr 19.

PMID:
22523192
19.

A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses.

Guo W, Zhao J, Li X, Qin L, Yan X, Liao H.

Plant J. 2011 May;66(3):541-52. doi: 10.1111/j.1365-313X.2011.04511.x. Epub 2011 Mar 7.

20.

Supplemental Content

Support Center