Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113


Synthesis of decacationic [60]fullerene decaiodides giving photoinduced production of superoxide radicals and effective PDT-mediation on antimicrobial photoinactivation.

Wang M, Maragani S, Huang L, Jeon S, Canteenwala T, Hamblin MR, Chiang LY.

Eur J Med Chem. 2013 May;63:170-84. doi: 10.1016/j.ejmech.2013.01.052. Epub 2013 Feb 17.


Antimicrobial photodynamic inactivation with decacationic functionalized fullerenes: oxygen-independent photokilling in presence of azide and new mechanistic insights.

Yin R, Wang M, Huang YY, Landi G, Vecchio D, Chiang LY, Hamblin MR.

Free Radic Biol Med. 2015 Feb;79:14-27. doi: 10.1016/j.freeradbiomed.2014.10.514. Epub 2014 Nov 10.


Potentiation of antimicrobial photodynamic inactivation mediated by a cationic fullerene by added iodide: in vitro and in vivo studies.

Zhang Y, Dai T, Wang M, Vecchio D, Chiang LY, Hamblin MR.

Nanomedicine (Lond). 2015 Mar;10(4):603-14. doi: 10.2217/nnm.14.131.


Synthesis, spectroscopic properties and photodynamic activity of porphyrin-fullerene C60 dyads with application in the photodynamic inactivation of Staphylococcus aureus.

Ballatore MB, Spesia MB, Milanesio ME, Durantini EN.

Eur J Med Chem. 2014 Aug 18;83:685-94. doi: 10.1016/j.ejmech.2014.06.077. Epub 2014 Jul 1.


Antimicrobial photodynamic therapy with decacationic monoadducts and bisadducts of [70]fullerene: in vitro and in vivo studies.

Huang L, Wang M, Dai T, Sperandio FF, Huang YY, Xuan Y, Chiang LY, Hamblin MR.

Nanomedicine (Lond). 2014 Feb;9(2):253-66. doi: 10.2217/nnm.13.22. Epub 2013 Jun 5.


Synthesis and photodynamic effect of new highly photostable decacationically armed [60]- and [70]fullerene decaiodide monoadducts to target pathogenic bacteria and cancer cells.

Wang M, Huang L, Sharma SK, Jeon S, Thota S, Sperandio FF, Nayka S, Chang J, Hamblin MR, Chiang LY.

J Med Chem. 2012 May 10;55(9):4274-85. doi: 10.1021/jm3000664. Epub 2012 Apr 26.


Decacationic [70]Fullerene Approach for Efficient Photokilling of Infectious Bacteria and Cancer Cells.

Huang L, Wang M, Sharma SK, Sperandio FF, Maragani S, Nayka S, Chang J, Hamblin MR, Chiang LY.

ECS Trans. 2013;45(20). doi: 10.1149/04520.0065ecst.


Photodynamic inactivation of bacteria using novel electrogenerated porphyrin-fullerene C60 polymeric films.

Ballatore MB, Durantini J, Gsponer NS, Suarez MB, Gervaldo M, Otero L, Spesia MB, Milanesio ME, Durantini EN.

Environ Sci Technol. 2015 Jun 16;49(12):7456-63. doi: 10.1021/acs.est.5b01407. Epub 2015 May 29.


Stable synthetic cationic bacteriochlorins as selective antimicrobial photosensitizers.

Huang L, Huang YY, Mroz P, Tegos GP, Zhiyentayev T, Sharma SK, Lu Z, Balasubramanian T, Krayer M, Ruzié C, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR.

Antimicrob Agents Chemother. 2010 Sep;54(9):3834-41. doi: 10.1128/AAC.00125-10. Epub 2010 Jul 12.


Antimicrobial photodynamic therapy with fulleropyrrolidine: photoinactivation mechanism of Staphylococcus aureus, in vitro and in vivo studies.

Grinholc M, Nakonieczna J, Fila G, Taraszkiewicz A, Kawiak A, Szewczyk G, Sarna T, Lilge L, Bielawski KP.

Appl Microbiol Biotechnol. 2015 May;99(9):4031-43. doi: 10.1007/s00253-015-6539-8. Epub 2015 Mar 29.


Synthesis, properties and photodynamic inactivation of Escherichia coli by novel cationic fullerene C60 derivatives.

Spesia MB, Milanesio ME, Durantini EN.

Eur J Med Chem. 2008 Apr;43(4):853-61. Epub 2007 Jul 10.


Synthesis, spectroscopic properties and photodynamic activity of two cationic BODIPY derivatives with application in the photoinactivation of microorganisms.

Agazzi ML, Ballatore MB, Reynoso E, Quiroga ED, Durantini EN.

Eur J Med Chem. 2017 Jan 27;126:110-121. doi: 10.1016/j.ejmech.2016.10.001. Epub 2016 Oct 3.


Mechanistic studies on the photodynamic effect induced by a dicationic fullerene C60 derivative on Escherichia coli and Candida albicans cells.

Milanesio ME, Spesia MB, Cormick MP, Durantini EN.

Photodiagnosis Photodyn Ther. 2013 Sep;10(3):320-7. doi: 10.1016/j.pdpdt.2013.01.007. Epub 2013 Mar 6.


Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light.

Li Q, Hong L, Li H, Liu C.

Biosens Bioelectron. 2017 Mar 15;89(Pt 1):477-482. doi: 10.1016/j.bios.2016.03.072. Epub 2016 Mar 30.


Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2.

Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T.

J Am Chem Soc. 2003 Oct 22;125(42):12803-9.


Synthesis, characterization, and biological evaluation of new Ru(II) polypyridyl photosensitizers for photodynamic therapy.

Frei A, Rubbiani R, Tubafard S, Blacque O, Anstaett P, Felgenträger A, Maisch T, Spiccia L, Gasser G.

J Med Chem. 2014 Sep 11;57(17):7280-92. doi: 10.1021/jm500566f. Epub 2014 Aug 26.


Functionalized fullerenes in photodynamic therapy.

Huang YY, Sharma SK, Yin R, Agrawal T, Chiang LY, Hamblin MR.

J Biomed Nanotechnol. 2014 Sep;10(9):1918-36. Review.


Photodynamic therapy with decacationic [60]fullerene monoadducts: effect of a light absorbing electron-donor antenna and micellar formulation.

Yin R, Wang M, Huang YY, Huang HC, Avci P, Chiang LY, Hamblin MR.

Nanomedicine. 2014 May;10(4):795-808. doi: 10.1016/j.nano.2013.11.014. Epub 2013 Dec 10.


Porphyrin-fullerene C60 dyads with high ability to form photoinduced charge-separated state as novel sensitizers for photodynamic therapy.

Milanesio ME, Alvarez MG, Rivarola V, Silber JJ, Durantini EN.

Photochem Photobiol. 2005 Jul-Aug;81(4):891-7.


A novel set of symmetric methylene blue derivatives exhibits effective bacteria photokilling - a structure-response study.

Gollmer A, Felgenträger A, Bäumler W, Maisch T, Späth A.

Photochem Photobiol Sci. 2015 Feb;14(2):335-51. doi: 10.1039/c4pp00309h.


Supplemental Content

Support Center