Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Hyperoxia and interferon-γ-induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stress-dependent pathway.

Choo-Wing R, Syed MA, Harijith A, Bowen B, Pryhuber G, Janér C, Andersson S, Homer RJ, Bhandari V.

Am J Respir Cell Mol Biol. 2013 Jun;48(6):749-57. doi: 10.1165/rcmb.2012-0381OC.

2.

Endoplasmic reticulum stress response as a possible mechanism of cyclooxygenase-2-independent anticancer effect of celecoxib.

Cha W, Park SW, Kwon TK, Hah JH, Sung MW.

Anticancer Res. 2014 Apr;34(4):1731-5.

PMID:
24692703
3.

Activation of the endoplasmic reticulum stress pathway involving CHOP in the lungs of rats with hyperoxia‑induced bronchopulmonary dysplasia.

Lu HY, Zhang J, Wang QX, Tang W, Zhang LJ.

Mol Med Rep. 2015 Sep;12(3):4494-500. doi: 10.3892/mmr.2015.3979. Epub 2015 Jun 22.

PMID:
26099737
4.

A role for matrix metalloproteinase 9 in IFNγ-mediated injury in developing lungs: relevance to bronchopulmonary dysplasia.

Harijith A, Choo-Wing R, Cataltepe S, Yasumatsu R, Aghai ZH, Janér J, Andersson S, Homer RJ, Bhandari V.

Am J Respir Cell Mol Biol. 2011 May;44(5):621-30. doi: 10.1165/rcmb.2010-0058OC. Epub 2011 Jan 7.

5.

PKR-dependent CHOP induction limits hyperoxia-induced lung injury.

Lozon TI, Eastman AJ, Matute-Bello G, Chen P, Hallstrand TS, Altemeier WA.

Am J Physiol Lung Cell Mol Physiol. 2011 Mar;300(3):L422-9. doi: 10.1152/ajplung.00166.2010. Epub 2010 Dec 24.

6.

Inhibition of Regulatory-Associated Protein of Mechanistic Target of Rapamycin Prevents Hyperoxia-Induced Lung Injury by Enhancing Autophagy and Reducing Apoptosis in Neonatal Mice.

Sureshbabu A, Syed M, Das P, Janér C, Pryhuber G, Rahman A, Andersson S, Homer RJ, Bhandari V.

Am J Respir Cell Mol Biol. 2016 Nov;55(5):722-735.

PMID:
27374190
7.

Calcium-activated endoplasmic reticulum stress as a major component of tumor cell death induced by 2,5-dimethyl-celecoxib, a non-coxib analogue of celecoxib.

Pyrko P, Kardosh A, Liu YT, Soriano N, Xiong W, Chow RH, Uddin J, Petasis NA, Mircheff AK, Farley RA, Louie SG, Chen TC, Schönthal AH.

Mol Cancer Ther. 2007 Apr;6(4):1262-75.

8.

Omeprazole Attenuates Pulmonary Aryl Hydrocarbon Receptor Activation and Potentiates Hyperoxia-Induced Developmental Lung Injury in Newborn Mice.

Shivanna B, Zhang S, Patel A, Jiang W, Wang L, Welty SE, Moorthy B.

Toxicol Sci. 2015 Nov;148(1):276-87. doi: 10.1093/toxsci/kfv183. Epub 2015 Aug 13.

9.

GADD153 mediates celecoxib-induced apoptosis in cervical cancer cells.

Kim SH, Hwang CI, Park WY, Lee JH, Song YS.

Carcinogenesis. 2006 Oct;27(10):1961-9. Epub 2006 Apr 5. Corrected and republished in: Carcinogenesis. 2007 Jan;28(1):223-31.

PMID:
16597647
10.

Hypoxic stress exacerbates hyperoxia-induced lung injury in a neonatal mouse model of bronchopulmonary dysplasia.

Ratner V, Slinko S, Utkina-Sosunova I, Starkov A, Polin RA, Ten VS.

Neonatology. 2009;95(4):299-305. doi: 10.1159/000178798. Epub 2008 Dec 4.

11.

Telomerase reverse transcriptase inhibition stimulates cyclooxygenase 2 expression in cancer cells and synergizes with celecoxib to exert anti-cancer effects.

Liu T, Liang X, Li B, Björkholm M, Jia J, Xu D.

Br J Cancer. 2013 Jun 11;108(11):2272-80. doi: 10.1038/bjc.2013.208. Epub 2013 May 16.

12.

COX-2- and endoplasmic reticulum stress-independent induction of ULBP-1 and enhancement of sensitivity to NK cell-mediated cytotoxicity by celecoxib in colon cancer cells.

Kim SJ, Ha GH, Bae JH, Kim GR, Son CH, Park YS, Yang K, Oh SO, Kim SH, Kang CD.

Exp Cell Res. 2015 Jan 15;330(2):451-9. doi: 10.1016/j.yexcr.2014.09.008. Epub 2014 Sep 16.

PMID:
25218028
13.

Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib.

Kardosh A, Golden EB, Pyrko P, Uddin J, Hofman FM, Chen TC, Louie SG, Petasis NA, Schönthal AH.

Cancer Res. 2008 Feb 1;68(3):843-51. doi: 10.1158/0008-5472.CAN-07-5555.

14.

Cyclooxygenase-2 in newborn hyperoxic lung injury.

Britt RD Jr, Velten M, Tipple TE, Nelin LD, Rogers LK.

Free Radic Biol Med. 2013 Aug;61:502-11. doi: 10.1016/j.freeradbiomed.2013.04.012. Epub 2013 Apr 25.

15.

Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins.

Harijith A, Pendyala S, Reddy NM, Bai T, Usatyuk PV, Berdyshev E, Gorshkova I, Huang LS, Mohan V, Garzon S, Kanteti P, Reddy SP, Raj JU, Natarajan V.

Am J Pathol. 2013 Oct;183(4):1169-82. doi: 10.1016/j.ajpath.2013.06.018. Epub 2013 Aug 8.

16.

GADD153 mediates celecoxib-induced apoptosis in cervical cancer cells.

Kim SH, Hwang CI, Juhnn YS, Lee JH, Park WY, Song YS.

Carcinogenesis. 2007 Jan;28(1):223-31.

PMID:
17166886
17.

Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia.

Alejandre-Alcázar MA, Kwapiszewska G, Reiss I, Amarie OV, Marsh LM, Sevilla-Pérez J, Wygrecka M, Eul B, Köbrich S, Hesse M, Schermuly RT, Seeger W, Eickelberg O, Morty RE.

Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L537-49. Epub 2006 Oct 27.

18.

Induction of apoptosis coupled to endoplasmic reticulum stress in human prostate cancer cells by n-butylidenephthalide.

Chiu SC, Chen SP, Huang SY, Wang MJ, Lin SZ, Harn HJ, Pang CY.

PLoS One. 2012;7(3):e33742. doi: 10.1371/journal.pone.0033742. Epub 2012 Mar 28.

19.

Cross-talk between the unfolded protein response and nuclear factor-κB signalling pathways regulates cytokine-mediated beta cell death in MIN6 cells and isolated mouse islets.

Chan JY, Biden TJ, Laybutt DR.

Diabetologia. 2012 Nov;55(11):2999-3009. doi: 10.1007/s00125-012-2657-3. Epub 2012 Jul 28.

PMID:
22893028
20.

Apoptosis in neonatal murine lung exposed to hyperoxia.

McGrath-Morrow SA, Stahl J.

Am J Respir Cell Mol Biol. 2001 Aug;25(2):150-5.

PMID:
11509323

Supplemental Content

Support Center