Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 82

1.

Towards embryonic-like scaffolds for skin tissue engineering: identification of effector molecules and construction of scaffolds.

Uijtdewilligen PJ, Versteeg EM, Gilissen C, van Reijmersdal SV, Schoppmeyer R, Wismans RG, Daamen WF, van Kuppevelt TH.

J Tissue Eng Regen Med. 2016 Jan;10(1):E34-44. doi: 10.1002/term.1725. Epub 2013 Mar 7.

PMID:
23468399
2.

Use of decellularized scaffolds combined with hyaluronic acid and basic fibroblast growth factor for skin tissue engineering.

Wu Z, Fan L, Xu B, Lin Y, Zhang P, Wei X.

Tissue Eng Part A. 2015 Jan;21(1-2):390-402. doi: 10.1089/ten.TEA.2013.0260. Epub 2014 Oct 14.

3.

Investigating the importance of flow when utilizing hyaluronan scaffolds for tissue engineering.

Donegan GC, Hunt JA, Rhodes N.

J Tissue Eng Regen Med. 2010 Feb;4(2):83-95. doi: 10.1002/term.208.

PMID:
19937643
4.

Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering.

Han CM, Zhang LP, Sun JZ, Shi HF, Zhou J, Gao CY.

J Zhejiang Univ Sci B. 2010 Jul;11(7):524-30. doi: 10.1631/jzus.B0900400.

5.

Human-like collagen/hyaluronic acid 3D scaffolds for vascular tissue engineering.

Zhu C, Fan D, Wang Y.

Mater Sci Eng C Mater Biol Appl. 2014 Jan 1;34:393-401. doi: 10.1016/j.msec.2013.09.044. Epub 2013 Oct 6.

PMID:
24268274
6.

A strategy for fabrication of a three-dimensional tissue construct containing uniformly distributed embryoid body-derived cells as a cardiac patch.

Huang CC, Liao CK, Yang MJ, Chen CH, Hwang SM, Hung YW, Chang Y, Sung HW.

Biomaterials. 2010 Aug;31(24):6218-27. doi: 10.1016/j.biomaterials.2010.04.067. Epub 2010 May 26.

PMID:
20537702
7.

Heparinized collagen scaffolds with and without growth factors for the repair of diaphragmatic hernia: construction and in vivo evaluation.

Brouwer KM, Wijnen RM, Reijnen D, Hafmans TG, Daamen WF, van Kuppevelt TH.

Organogenesis. 2013 Jul-Sep;9(3):161-7. doi: 10.4161/org.25587. Epub 2013 Jul 18.

8.

Collagen-based scaffolds for skin tissue engineering.

Gaspar A, Moldovan L, Constantin D, Stanciuc AM, Sarbu Boeti PM, Efrimescu IC.

J Med Life. 2011 May 15;4(2):172-7. Epub 2011 May 25.

10.

Comparison of various types of collagenous scaffolds applied for embryonic nerve cell culture.

Drobnik J, Pietrucha K, Kudzin M, Mader K, Szymański J, Szczepanowska A.

Biologicals. 2017 Mar;46:74-80. doi: 10.1016/j.biologicals.2017.01.001. Epub 2017 Jan 17.

PMID:
28108210
11.

Chondrogenic differentiation of ATDC5 and hMSCs could be induced by a novel scaffold-tricalcium phosphate-collagen-hyaluronan without any exogenous growth factors in vitro.

Meng F, He A, Zhang Z, Zhang Z, Lin Z, Yang Z, Long Y, Wu G, Kang Y, Liao W.

J Biomed Mater Res A. 2014 Aug;102(8):2725-35. doi: 10.1002/jbm.a.34948. Epub 2013 Sep 24.

PMID:
24026971
12.

Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis.

Parenteau-Bareil R, Gauvin R, Cliche S, Gariépy C, Germain L, Berthod F.

Acta Biomater. 2011 Oct;7(10):3757-65. doi: 10.1016/j.actbio.2011.06.020. Epub 2011 Jun 17.

PMID:
21723967
13.

Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.

Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC.

Mater Sci Eng C Mater Biol Appl. 2014 Jan 1;34:402-9. doi: 10.1016/j.msec.2013.09.043. Epub 2013 Oct 5.

PMID:
24268275
14.

Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.

Jiang T, Khan Y, Nair LS, Abdel-Fattah WI, Laurencin CT.

J Biomed Mater Res A. 2010 Jun 1;93(3):1193-208. doi: 10.1002/jbm.a.32615.

PMID:
19777575
15.

Hybrid hyaluronic acid hydrogel/poly(ɛ-caprolactone) scaffold provides mechanically favorable platform for cartilage tissue engineering studies.

Mintz BR, Cooper JA Jr.

J Biomed Mater Res A. 2014 Sep;102(9):2918-26. doi: 10.1002/jbm.a.34957. Epub 2013 Sep 30.

PMID:
24115629
16.

Addition of hyaluronic acid improves cellular infiltration and promotes early-stage chondrogenesis in a collagen-based scaffold for cartilage tissue engineering.

Matsiko A, Levingstone TJ, O'Brien FJ, Gleeson JP.

J Mech Behav Biomed Mater. 2012 Jul;11:41-52. doi: 10.1016/j.jmbbm.2011.11.012. Epub 2011 Dec 6.

PMID:
22658153
17.

Expanded human meniscus-derived cells in 3-D polymer-hyaluronan scaffolds for meniscus repair.

Freymann U, Endres M, Neumann K, Scholman HJ, Morawietz L, Kaps C.

Acta Biomater. 2012 Feb;8(2):677-85. doi: 10.1016/j.actbio.2011.10.007. Epub 2011 Oct 11.

PMID:
22023746
18.

The effect of hyaluronic acid on biofunctionality of gelatin-collagen intestine tissue engineering scaffolds.

Shabafrooz V, Mozafari M, Köhler GA, Assefa S, Vashaee D, Tayebi L.

J Biomed Mater Res A. 2014 Sep;102(9):3130-9. doi: 10.1002/jbm.a.34984. Epub 2013 Oct 17.

PMID:
24132994
19.

Preparation of differently sized injectable collagen micro-scaffolds.

Geutjes PJ, Faraj KA, Daamen WF, van Kuppevelt TH.

J Tissue Eng Regen Med. 2011 Aug;5(8):665-7. doi: 10.1002/term.360. Epub 2010 Dec 29.

PMID:
21774089
20.

Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering.

Garcia-Fuentes M, Meinel AJ, Hilbe M, Meinel L, Merkle HP.

Biomaterials. 2009 Oct;30(28):5068-76. doi: 10.1016/j.biomaterials.2009.06.008. Epub 2009 Jun 28.

PMID:
19564040

Supplemental Content

Support Center