Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 163

1.

How do the electron beam writing and metal deposition affect the properties of graphene during device fabrication?

Shen X, Wang H, Yu T.

Nanoscale. 2013 Apr 21;5(8):3352-8. doi: 10.1039/c3nr33460k. Epub 2013 Mar 6.

PMID:
23467511
2.

Monitoring electron-beam irradiation effects on graphenes by temporal Auger electron spectroscopy.

Xu M, Fujita D, Hanagata N.

Nanotechnology. 2010 Jul 2;21(26):265705. doi: 10.1088/0957-4484/21/26/265705. Epub 2010 Jun 10.

PMID:
20534894
3.

Dynamic modulation of electronic properties of graphene by localized carbon doping using focused electron beam induced deposition.

Kim S, Russell M, Henry M, Kim SS, Naik RR, Voevodin AA, Jang SS, Tsukruk VV, Fedorov AG.

Nanoscale. 2015 Sep 28;7(36):14946-52. doi: 10.1039/c5nr04063a. Epub 2015 Aug 25.

PMID:
26302897
4.

Nanometer-scale lithography on microscopically clean graphene.

van Dorp WF, Zhang X, Feringa BL, Wagner JB, Hansen TW, De Hosson JT.

Nanotechnology. 2011 Dec 16;22(50):505303. doi: 10.1088/0957-4484/22/50/505303. Epub 2011 Nov 23.

PMID:
22108050
5.

Activating "Invisible" Glue: Using Electron Beam for Enhancement of Interfacial Properties of Graphene-Metal Contact.

Kim S, Russell M, Kulkarni DD, Henry M, Kim S, Naik RR, Voevodin AA, Jang SS, Tsukruk VV, Fedorov AG.

ACS Nano. 2016 Jan 26;10(1):1042-9. doi: 10.1021/acsnano.5b06342. Epub 2016 Jan 12.

PMID:
26741645
6.

Electron-beam evaporated silicon as a top contact for molecular electronic device fabrication.

Kumar R, Yan H, McCreery RL, Bergren AJ.

Phys Chem Chem Phys. 2011 Aug 28;13(32):14318-24. doi: 10.1039/c1cp20755e. Epub 2011 Jun 23.

PMID:
21701710
7.

Direct experimental evidence of metal-mediated etching of suspended graphene.

Ramasse QM, Zan R, Bangert U, Boukhvalov DW, Son YW, Novoselov KS.

ACS Nano. 2012 May 22;6(5):4063-71. doi: 10.1021/nn300452y. Epub 2012 Apr 30.

PMID:
22533553
8.

Up-scaling graphene electronics by reproducible metal-graphene contacts.

Asadi K, Timmering EC, Geuns TC, Pesquera A, Centeno A, Zurutuza A, Klootwijk JH, Blom PW, de Leeuw DM.

ACS Appl Mater Interfaces. 2015 May 13;7(18):9429-35. doi: 10.1021/acsami.5b01869. Epub 2015 May 1.

PMID:
25901791
9.

Electrical transport and breakdown in graphene multilayers loaded with electron beam induced deposited platinum.

Kulshrestha N, Misra A, Koratkar N, Misra DS.

ACS Appl Mater Interfaces. 2013 Apr 24;5(8):3424-30. doi: 10.1021/am400489y. Epub 2013 Apr 4.

PMID:
23489064
10.

Examining the stability of folded graphene edges against electron beam induced sputtering with atomic resolution.

Warner JH, Rümmeli MH, Bachmatiuk A, Büchner B.

Nanotechnology. 2010 Aug 13;21(32):325702. doi: 10.1088/0957-4484/21/32/325702. Epub 2010 Jul 19.

PMID:
20639589
11.

Layer-dependent morphologies of silver on n-layer graphene.

Huang CW, Lin HY, Huang CH, Shiue RJ, Wang WH, Liu CY, Chui HC.

Nanoscale Res Lett. 2012 Nov 9;7(1):618. doi: 10.1186/1556-276X-7-618.

12.

Direct patterning of highly-conductive graphene@copper composites using copper naphthenate as a resist for graphene device applications.

Bi K, Xiang Q, Chen Y, Shi H, Li Z, Lin J, Zhang Y, Wan Q, Zhang G, Qin S, Zhang X, Duan H.

Nanoscale. 2017 Nov 9;9(43):16755-16763. doi: 10.1039/c7nr05779b.

PMID:
29072744
13.

Dip-pen nanolithography of electrical contacts to single graphene flakes.

Wang WM, Stander N, Stoltenberg RM, Goldhaber-Gordon D, Bao Z.

ACS Nano. 2010 Nov 23;4(11):6409-16. doi: 10.1021/nn101324x. Epub 2010 Oct 14.

PMID:
20945878
14.

Controlling the physicochemical state of carbon on graphene using focused electron-beam-induced deposition.

Kim S, Kulkarni DD, Davis R, Kim SS, Naik RR, Voevodin AA, Russell M, Jang SS, Tsukruk VV, Fedorov AG.

ACS Nano. 2014 Jul 22;8(7):6805-13. doi: 10.1021/nn5011073. Epub 2014 Jul 7.

PMID:
24988046
15.

Thinning segregated graphene layers on high carbon solubility substrates of rhodium foils by tuning the quenching process.

Liu M, Zhang Y, Chen Y, Gao Y, Gao T, Ma D, Ji Q, Zhang Y, Li C, Liu Z.

ACS Nano. 2012 Dec 21;6(12):10581-9. doi: 10.1021/nn3047154. Epub 2012 Nov 21.

PMID:
23157621
16.

Layer-by-layer thinning of graphene by plasma irradiation and post-annealing.

Yang X, Tang S, Ding G, Xie X, Jiang M, Huang F.

Nanotechnology. 2012 Jan 20;23(2):025704. doi: 10.1088/0957-4484/23/2/025704.

PMID:
22166725
17.

Toward high throughput interconvertible graphane-to-graphene growth and patterning.

Wang Y, Xu X, Lu J, Lin M, Bao Q, Özyilmaz B, Loh KP.

ACS Nano. 2010 Oct 26;4(10):6146-52. doi: 10.1021/nn1017389.

PMID:
20845918
18.

Raman fingerprint of doping due to metal adsorbates on graphene.

Iqbal MW, Singh AK, Iqbal MZ, Eom J.

J Phys Condens Matter. 2012 Aug 22;24(33):335301. doi: 10.1088/0953-8984/24/33/335301. Epub 2012 Jul 20.

PMID:
22814217
19.

In Situ Fabrication and Characterization of Graphene Electronic Device Based on Dual Beam System.

Chen W, Qin S, Zhang XA, Fang J, Wang G, Zhang S, Wang C, Wang L, Chang S.

J Nanosci Nanotechnol. 2015 Jun;15(6):4591-5.

PMID:
26369085
20.

CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films.

Ramón ME, Gupta A, Corbet C, Ferrer DA, Movva HC, Carpenter G, Colombo L, Bourianoff G, Doczy M, Akinwande D, Tutuc E, Banerjee SK.

ACS Nano. 2011 Sep 27;5(9):7198-204. doi: 10.1021/nn202012m. Epub 2011 Aug 5.

PMID:
21800895

Supplemental Content

Support Center