Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 204

1.

Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid.

Dong H, Lo IM.

Water Res. 2013 May 1;47(7):2489-96. doi: 10.1016/j.watres.2013.02.022. Epub 2013 Feb 16.

PMID:
23466217
2.

Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron.

Dong H, Lo IM.

Water Res. 2013 Jan 1;47(1):419-27. doi: 10.1016/j.watres.2012.10.013. Epub 2012 Oct 17.

PMID:
23123051
3.

Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media.

Dong H, Zeng G, Zhang C, Liang J, Ahmad K, Xu P, He X, Lai M.

J Environ Sci (China). 2015 Jun 1;32:180-8. doi: 10.1016/j.jes.2014.09.043. Epub 2015 Apr 19.

PMID:
26040744
4.

Chromate removal by surface-modified nanoscale zero-valent iron: Effect of different surface coatings and water chemistry.

Dong H, He Q, Zeng G, Tang L, Zhang C, Xie Y, Zeng Y, Zhao F, Wu Y.

J Colloid Interface Sci. 2016 Jun 1;471:7-13. doi: 10.1016/j.jcis.2016.03.011. Epub 2016 Mar 5.

PMID:
26970032
5.

The influence of humic acid and clay content on the transport of polymer-coated iron nanoparticles through sand.

Jung B, O'Carroll D, Sleep B.

Sci Total Environ. 2014 Oct 15;496:155-64. doi: 10.1016/j.scitotenv.2014.06.075. Epub 2014 Jul 28.

PMID:
25079234
6.

Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.

Laumann S, Micić V, Hofmann T.

Water Res. 2014 Mar 1;50:70-9. doi: 10.1016/j.watres.2013.11.040. Epub 2013 Dec 4.

PMID:
24361704
7.

Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.

Kim HS, Ahn JY, Kim C, Lee S, Hwang I.

Chemosphere. 2014 Oct;113:93-100. doi: 10.1016/j.chemosphere.2014.04.047. Epub 2014 May 16.

PMID:
25065795
8.

Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal.

Giasuddin AB, Kanel SR, Choi H.

Environ Sci Technol. 2007 Mar 15;41(6):2022-7.

PMID:
17410800
9.

Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models.

Sirk KM, Saleh NB, Phenrat T, Kim HJ, Dufour B, Jeongbin O, Golas PL, Matyjaszewski K, Lowry GV, Tilton RD.

Environ Sci Technol. 2009 May 15;43(10):3803-8.

PMID:
19544891
10.

Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron.

Dong H, Ahmad K, Zeng G, Li Z, Chen G, He Q, Xie Y, Wu Y, Zhao F, Zeng Y.

Environ Pollut. 2016 Apr;211:363-9. doi: 10.1016/j.envpol.2016.01.017. Epub 2016 Jan 18.

PMID:
26796746
11.

Enhanced colloidal stability of nanoscale zero valent iron particles in the presence of sodium silicate water glass.

Honetschlägerová L, Janouškovcová P, Kubal M, Sofer Z.

Environ Technol. 2015 Jan-Feb;36(1-4):358-65. doi: 10.1080/09593330.2014.977825. Epub 2014 Nov 10.

PMID:
25323113
12.

Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron.

Chen J, Xiu Z, Lowry GV, Alvarez PJ.

Water Res. 2011 Feb;45(5):1995-2001. doi: 10.1016/j.watres.2010.11.036. Epub 2010 Dec 3.

PMID:
21232782
13.

Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns.

Saleh N, Kim HJ, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV.

Environ Sci Technol. 2008 May 1;42(9):3349-55.

PMID:
18522117
14.

Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media.

Raychoudhury T, Naja G, Ghoshal S.

J Contam Hydrol. 2010 Nov 25;118(3-4):143-51. doi: 10.1016/j.jconhyd.2010.09.005. Epub 2010 Sep 15.

PMID:
20937540
15.

Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum.

Tiraferri A, Chen KL, Sethi R, Elimelech M.

J Colloid Interface Sci. 2008 Aug;324(1-2):71-9. doi: 10.1016/j.jcis.2008.04.064. Epub 2008 May 7.

PMID:
18508073
16.

Lab-scale simulation of the fate and transport of nano zero-valent iron in subsurface environments: aggregation, sedimentation, and contaminant desorption.

Yin K, Lo IM, Dong H, Rao P, Mak MS.

J Hazard Mater. 2012 Aug 15;227-228:118-25. doi: 10.1016/j.jhazmat.2012.05.019. Epub 2012 May 14.

PMID:
22633881
17.

Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material.

Kanel SR, Greneche JM, Choi H.

Environ Sci Technol. 2006 Mar 15;40(6):2045-50.

PMID:
16570634
18.

The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron.

Dong H, Xie Y, Zeng G, Tang L, Liang J, He Q, Zhao F, Zeng Y, Wu Y.

Chemosphere. 2016 Feb;144:1682-9. doi: 10.1016/j.chemosphere.2015.10.066. Epub 2015 Nov 11.

PMID:
26519799
19.

SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity.

Sun X, Yan Y, Li J, Han W, Wang L.

J Hazard Mater. 2014 Feb 15;266:26-33. doi: 10.1016/j.jhazmat.2013.12.001. Epub 2013 Dec 7.

PMID:
24374562
20.

Deactivation of nanoscale zero-valent iron by humic acid and by retention in water.

Kim DG, Hwang YH, Shin HS, Ko SO.

Environ Technol. 2013 May-Jun;34(9-12):1625-35.

PMID:
24191498

Supplemental Content

Support Center