Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 134

1.
2.

Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions.

Horn PR, Head-Gordon M.

J Chem Phys. 2015 Sep 21;143(11):114111. doi: 10.1063/1.4930534.

PMID:
26395691
3.

Unrestricted absolutely localized molecular orbitals for energy decomposition analysis: theory and applications to intermolecular interactions involving radicals.

Horn PR, Sundstrom EJ, Baker TA, Head-Gordon M.

J Chem Phys. 2013 Apr 7;138(13):134119. doi: 10.1063/1.4798224.

PMID:
23574220
4.

Charge-transfer and the hydrogen bond: spectroscopic and structural implications from electronic structure calculations.

Ramos-Cordoba E, Lambrecht DS, Head-Gordon M.

Faraday Discuss. 2011;150:345-62; discussion 391-418.

PMID:
22457956
6.
7.

Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals.

Khaliullin RZ, Cobar EA, Lochan RC, Bell AT, Head-Gordon M.

J Phys Chem A. 2007 Sep 13;111(36):8753-65. Epub 2007 Jul 27.

PMID:
17655284
8.

Localization of molecular orbitals on fragments.

Sax AF.

J Comput Chem. 2012 Jun 30;33(17):1495-510. doi: 10.1002/jcc.22980. Epub 2012 Apr 20.

PMID:
22522607
9.

Analysis of charge transfer effects in molecular complexes based on absolutely localized molecular orbitals.

Khaliullin RZ, Bell AT, Head-Gordon M.

J Chem Phys. 2008 May 14;128(18):184112. doi: 10.1063/1.2912041.

PMID:
18532804
10.

Examination of the hydrogen-bonding networks in small water clusters (n = 2-5, 13, 17) using absolutely localized molecular orbital energy decomposition analysis.

Cobar EA, Horn PR, Bergman RG, Head-Gordon M.

Phys Chem Chem Phys. 2012 Nov 28;14(44):15328-39. doi: 10.1039/c2cp42522j. Epub 2012 Oct 10.

PMID:
23052011
11.
13.

Third-order interactions in symmetry-adapted perturbation theory.

Patkowski K, Szalewicz K, Jeziorski B.

J Chem Phys. 2006 Oct 21;125(15):154107.

PMID:
17059239
14.

An energy decomposition analysis for second-order Møller-Plesset perturbation theory based on absolutely localized molecular orbitals.

Thirman J, Head-Gordon M.

J Chem Phys. 2015 Aug 28;143(8):084124. doi: 10.1063/1.4929479.

PMID:
26328835
15.
16.

Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework.

Schneider WB, Bistoni G, Sparta M, Saitow M, Riplinger C, Auer AA, Neese F.

J Chem Theory Comput. 2016 Oct 11;12(10):4778-4792. Epub 2016 Sep 9.

PMID:
27564403
17.

Fragment-Localized Kohn-Sham Orbitals via a Singles Configuration-Interaction Procedure and Application to Local Properties and Intermolecular Energy Decomposition Analysis.

Reinhardt P, Piquemal JP, Savin A.

J Chem Theory Comput. 2008 Dec 9;4(12):2020-9. doi: 10.1021/ct800242n. Epub 2008 Nov 5.

PMID:
26620475
18.

Efficient Implementation of Energy Decomposition Analysis for Second-Order Møller-Plesset Perturbation Theory and Application to Anion-π Interactions.

Thirman J, Head-Gordon M.

J Phys Chem A. 2017 Jan 26;121(3):717-728. doi: 10.1021/acs.jpca.6b11516. Epub 2017 Jan 17.

PMID:
28004932
19.

Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals.

Horn PR, Mao Y, Head-Gordon M.

Phys Chem Chem Phys. 2016 Aug 17;18(33):23067-79. doi: 10.1039/c6cp03784d.

PMID:
27492057
20.

Energy decomposition analysis in an adiabatic picture.

Mao Y, Horn PR, Head-Gordon M.

Phys Chem Chem Phys. 2017 Feb 22;19(8):5944-5958. doi: 10.1039/c6cp08039a.

PMID:
28176997

Supplemental Content

Support Center