Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting.

Zhen C, Wang L, Liu G, Lu GQ, Cheng HM.

Chem Commun (Camb). 2013 Apr 14;49(29):3019-21. doi: 10.1039/c3cc40760h.

PMID:
23463440
2.

Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting.

Li Y, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K.

Adv Mater. 2013 Jan 4;25(1):125-31. doi: 10.1002/adma.201202582.

PMID:
22987610
3.

Hydrothermal growth of highly oriented single crystalline Ta2O5 nanorod arrays and their conversion to Ta3N5 for efficient solar driven water splitting.

Su Z, Wang L, Grigorescu S, Lee K, Schmuki P.

Chem Commun (Camb). 2014 Dec 21;50(98):15561-4. doi: 10.1039/c4cc05673f.

PMID:
25357012
4.

Mg-Zr Cosubstituted Ta3N5 Photoanode for Lower-Onset-Potential Solar-Driven Photoelectrochemical Water Splitting.

Seo J, Takata T, Nakabayashi M, Hisatomi T, Shibata N, Minegishi T, Domen K.

J Am Chem Soc. 2015 Oct 14;137(40):12780-3. doi: 10.1021/jacs.5b08329.

PMID:
26426439
5.

Fabrication of highly ordered Ta2O5 and Ta3N5 nanorod arrays by nanoimprinting and through-mask anodization.

Li Y, Nagato K, Delaunay JJ, Kubota J, Domen K.

Nanotechnology. 2014 Jan 10;25(1):014013. doi: 10.1088/0957-4484/25/1/014013.

PMID:
24334655
6.

Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting.

Mao A, Park NG, Han GY, Park JH.

Nanotechnology. 2011 Apr 29;22(17):175703. doi: 10.1088/0957-4484/22/17/175703.

PMID:
21411913
7.

High-efficiency photoelectrochemical properties by a highly crystalline CdS-sensitized ZnO nanorod array.

Bu Y, Chen Z, Li W, Yu J.

ACS Appl Mater Interfaces. 2013 Jun 12;5(11):5097-104. doi: 10.1021/am400964c.

PMID:
23688263
8.

Enhanced photoelectrochemical performance of bridged ZnO nanorod arrays grown on V-grooved structure.

Wei Y, Ke L, Leong ES, Liu H, Liew LL, Teng JH, Du H, Sun XW.

Nanotechnology. 2012 Sep 14;23(36):365704. doi: 10.1088/0957-4484/23/36/365704.

PMID:
22910379
9.

Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.

Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y.

Nano Lett. 2011 Jul 13;11(7):3026-33. doi: 10.1021/nl201766h.

PMID:
21710974
10.

A redox-mediator-free solar-driven Z-scheme water-splitting system consisting of modified Ta3N5 as an oxygen-evolution photocatalyst.

Ma SS, Maeda K, Hisatomi T, Tabata M, Kudo A, Domen K.

Chemistry. 2013 Jun 3;19(23):7480-6. doi: 10.1002/chem.201300579.

PMID:
23584996
11.

Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.

Feng X, Chen Y, Qin Z, Wang M, Guo L.

ACS Appl Mater Interfaces. 2016 Jul 20;8(28):18089-96. doi: 10.1021/acsami.6b04887.

PMID:
27347739
12.

Ge-mediated modification in Ta3N5 photoelectrodes with enhanced charge transport for solar water splitting.

Feng J, Cao D, Wang Z, Luo W, Wang J, Li Z, Zou Z.

Chemistry. 2014 Dec 1;20(49):16384-90. doi: 10.1002/chem.201402760.

PMID:
25314682
13.

Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance.

Li Y, Wei X, Zhu B, Wang H, Tang Y, Sum TC, Chen X.

Nanoscale. 2016 Jun 7;8(21):11284-90. doi: 10.1039/c6nr02430k.

PMID:
27189633
14.

Tandem Core-Shell Si-Ta3N5 Photoanodes for Photoelectrochemical Water Splitting.

Narkeviciute I, Chakthranont P, Mackus AJ, Hahn C, Pinaud BA, Bent SF, Jaramillo TF.

Nano Lett. 2016 Dec 14;16(12):7565-7572.

PMID:
27960454
15.

Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays.

Shen S, Guo P, Wheeler DA, Jiang J, Lindley SA, Kronawitter CX, Zhang JZ, Guo L, Mao SS.

Nanoscale. 2013 Oct 21;5(20):9867-74. doi: 10.1039/c3nr03245k.

PMID:
23974247
16.

Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency.

Li Y, Zhang L, Torres-Pardo A, González-Calbet JM, Ma Y, Oleynikov P, Terasaki O, Asahina S, Shima M, Cha D, Zhao L, Takanabe K, Kubota J, Domen K.

Nat Commun. 2013;4:2566. doi: 10.1038/ncomms3566.

PMID:
24089138
17.

Vertically aligned WO₃ nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties.

Su J, Feng X, Sloppy JD, Guo L, Grimes CA.

Nano Lett. 2011 Jan 12;11(1):203-8. doi: 10.1021/nl1034573.

PMID:
21114333
19.
20.

Nanostructured WO₃/BiVO₄ heterojunction films for efficient photoelectrochemical water splitting.

Su J, Guo L, Bao N, Grimes CA.

Nano Lett. 2011 May 11;11(5):1928-33. doi: 10.1021/nl2000743.

PMID:
21513345

Supplemental Content

Support Center