Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Pleiotropy in the wild: the dormancy gene DOG1 exerts cascading control on life cycles.

Chiang GC, Barua D, Dittmar E, Kramer EM, de Casas RR, Donohue K.

Evolution. 2013 Mar;67(3):883-93. doi: 10.1111/j.1558-5646.2012.01828.x. Epub 2012 Nov 16.

PMID:
23461337
2.

DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana.

Chiang GC, Bartsch M, Barua D, Nakabayashi K, Debieu M, Kronholm I, Koornneef M, Soppe WJ, Donohue K, De Meaux J.

Mol Ecol. 2011 Aug;20(16):3336-49. doi: 10.1111/j.1365-294X.2011.05181.x. Epub 2011 Jul 8.

PMID:
21740475
3.

Seed after-ripening and dormancy determine adult life history independently of germination timing.

de Casas RR, Kovach K, Dittmar E, Barua D, Barco B, Donohue K.

New Phytol. 2012 May;194(3):868-79. doi: 10.1111/j.1469-8137.2012.04097.x. Epub 2012 Mar 8.

4.

Altitudinal and climatic associations of seed dormancy and flowering traits evidence adaptation of annual life cycle timing in Arabidopsis thaliana.

Vidigal DS, Marques AC, Willems LA, Buijs G, Méndez-Vigo B, Hilhorst HW, Bentsink L, Picó FX, Alonso-Blanco C.

Plant Cell Environ. 2016 Aug;39(8):1737-48. doi: 10.1111/pce.12734. Epub 2016 May 4.

5.

DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways.

Huo H, Wei S, Bradford KJ.

Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):E2199-206. doi: 10.1073/pnas.1600558113. Epub 2016 Mar 28.

6.

Interacting effects of genetic variation for seed dormancy and flowering time on phenology, life history, and fitness of experimental Arabidopsis thaliana populations over multiple generations in the field.

Taylor MA, Cooper MD, Sellamuthu R, Braun P, Migneault A, Browning A, Perry E, Schmitt J.

New Phytol. 2017 Oct;216(1):291-302. doi: 10.1111/nph.14712. Epub 2017 Jul 28.

7.

Genetic basis of adaptation in Arabidopsis thaliana: local adaptation at the seed dormancy QTL DOG1.

Kronholm I, Picó FX, Alonso-Blanco C, Goudet J, de Meaux J.

Evolution. 2012 Jul;66(7):2287-302. doi: 10.1111/j.1558-5646.2012.01590.x. Epub 2012 Feb 28.

PMID:
22759302
8.

Why ontogeny matters during adaptation: developmental niche construction and pleiotorpy across the life cycle in Arabidopsis thaliana.

Donohue K.

Evolution. 2014 Jan;68(1):32-47. doi: 10.1111/evo.12284. Epub 2013 Oct 29.

PMID:
24117399
9.

Canalization of Seasonal Phenology in the Presence of Developmental Variation: Seed Dormancy Cycling in an Annual Weed.

Edwards B, Burghardt LT, Kovach KE, Donohue K.

Integr Comp Biol. 2017 Nov 1;57(5):1021-1039. doi: 10.1093/icb/icx065.

PMID:
28992196
10.

DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination.

Graeber K, Linkies A, Steinbrecher T, Mummenhoff K, Tarkowská D, Turečková V, Ignatz M, Sperber K, Voegele A, de Jong H, Urbanová T, Strnad M, Leubner-Metzger G.

Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):E3571-80. doi: 10.1073/pnas.1403851111. Epub 2014 Aug 11.

11.

Maternal vernalization and vernalization-pathway genes influence progeny seed germination.

Auge GA, Blair LK, Neville H, Donohue K.

New Phytol. 2017 Oct;216(2):388-400. doi: 10.1111/nph.14520. Epub 2017 Mar 22.

12.

Flowering time and seed dormancy control use external coincidence to generate life history strategy.

Springthorpe V, Penfield S.

Elife. 2015 Mar 31;4. doi: 10.7554/eLife.05557.

13.

The earliest stages of adaptation in an experimental plant population: strong selection on QTLS for seed dormancy.

Huang X, Schmitt J, Dorn L, Griffith C, Effgen S, Takao S, Koornneef M, Donohue K.

Mol Ecol. 2010 Apr;19(7):1335-51. doi: 10.1111/j.1365-294X.2010.04557.x. Epub 2010 Feb 10.

PMID:
20149097
14.

Variation in seed dormancy quantitative trait loci in Arabidopsis thaliana originating from one site.

Silady RA, Effgen S, Koornneef M, Reymond M.

PLoS One. 2011;6(6):e20886. doi: 10.1371/journal.pone.0020886. Epub 2011 Jun 30.

15.

Niche construction through germination cueing: life-history responses to timing of germination in Arabidopsis thaliana.

Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J.

Evolution. 2005 Apr;59(4):771-85.

PMID:
15926688
16.

Seed Dormancy in Arabidopsis Requires Self-Binding Ability of DOG1 Protein and the Presence of Multiple Isoforms Generated by Alternative Splicing.

Nakabayashi K, Bartsch M, Ding J, Soppe WJ.

PLoS Genet. 2015 Dec 18;11(12):e1005737. doi: 10.1371/journal.pgen.1005737. eCollection 2015 Dec.

17.

Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field.

Korves TM, Schmid KJ, Caicedo AL, Mays C, Stinchcombe JR, Purugganan MD, Schmitt J.

Am Nat. 2007 May;169(5):E141-57. Epub 2007 Mar 7.

PMID:
17427127
18.

The genetics of adaptation to novel environments: selection on germination timing in Arabidopsis thaliana.

Moyers BT, Kane NC.

Mol Ecol. 2010 Apr;19(7):1270-2. doi: 10.1111/j.1365-294X.2010.04558.x.

PMID:
20456230
19.

Early life stages contribute strongly to local adaptation in Arabidopsis thaliana.

Postma FM, Ågren J.

Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7590-5. doi: 10.1073/pnas.1606303113. Epub 2016 Jun 21.

20.

The autonomous flowering-time pathway pleiotropically regulates seed germination in Arabidopsis thaliana.

Auge GA, Blair LK, Karediya A, Donohue K.

Ann Bot. 2018 Jan 25;121(1):183-191. doi: 10.1093/aob/mcx132.

Supplemental Content

Support Center