Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 71

1.

Activation of Transient Receptor Potential Vanilloid 4 Increases NMDA-Activated Current in Hippocampal Pyramidal Neurons.

Li L, Qu W, Zhou L, Lu Z, Jie P, Chen L, Chen L.

Front Cell Neurosci. 2013 Mar 4;7:17. doi: 10.3389/fncel.2013.00017. eCollection 2013. Erratum in: Front Cell Neurosci. 2014;8:130. Dosage error in published abstract; MEDLINE/PubMed abstract corrected.

2.

Activation of Transient Receptor Potential Vanilloid 4 is Involved in Neuronal Injury in Middle Cerebral Artery Occlusion in Mice.

Jie P, Lu Z, Hong Z, Li L, Zhou L, Li Y, Zhou R, Zhou Y, Du Y, Chen L, Chen L.

Mol Neurobiol. 2016 Jan;53(1):8-17. doi: 10.1007/s12035-014-8992-2. Epub 2014 Nov 18.

PMID:
25399955
3.

Transient receptor potential vanilloid 4 mediates hypotonicity-induced enhancement of synaptic transmission in hippocampal slices.

Li L, Yin J, Jie PH, Lu ZH, Zhou LB, Chen L, Chen L.

CNS Neurosci Ther. 2013 Nov;19(11):854-62. doi: 10.1111/cns.12143. Epub 2013 Jul 4.

PMID:
23826708
4.

[Effects of Ginkgo biloba extract against excitotoxicity induced by NMDA receptors and mechanism thereof].

Xiao ZY, Sun CK, Xiao XW, Lin YZ, Li S, Ma H, Song GR, Cheng R.

Zhonghua Yi Xue Za Zhi. 2006 Sep 19;86(35):2479-84. Chinese.

PMID:
17156678
5.

Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD-95.

Gascón S, Sobrado M, Roda JM, Rodríguez-Peña A, Díaz-Guerra M.

Mol Psychiatry. 2008 Jan;13(1):99-114. Epub 2007 May 8.

PMID:
17486105
6.

Transient Receptor Potential Vanilloid 4-Induced Modulation of Voltage-Gated Sodium Channels in Hippocampal Neurons.

Hong Z, Jie P, Tian Y, Chen T, Chen L, Chen L.

Mol Neurobiol. 2016 Jan;53(1):759-768. doi: 10.1007/s12035-014-9038-5. Epub 2014 Dec 15.

PMID:
25502461
8.

Transient Receptor Potential Vanilloid 4 Inhibits γ-Aminobutyric Acid-Activated Current in Hippocampal Pyramidal Neurons.

Hong Z, Tian Y, Qi M, Li Y, Du Y, Chen L, Liu W, Chen L.

Front Mol Neurosci. 2016 Aug 26;9:77. doi: 10.3389/fnmol.2016.00077. eCollection 2016.

9.

Early postnatal switch in magnesium sensitivity of NMDA receptors in rat CA1 pyramidal cells.

Kirson ED, Schirra C, Konnerth A, Yaari Y.

J Physiol. 1999 Nov 15;521 Pt 1:99-111.

10.

mGluR1 antagonist decreases tyrosine phosphorylation of NMDA receptor and attenuates infarct size after transient focal cerebral ischemia.

Murotomi K, Takagi N, Takayanagi G, Ono M, Takeo S, Tanonaka K.

J Neurochem. 2008 Jun;105(5):1625-34. doi: 10.1111/j.1471-4159.2008.05260.x. Epub 2008 Feb 1.

11.

Bi-directional regulation of CaMKIIα phosphorylation at Thr286 by NMDA receptors in cultured cortical neurons.

Zhou X, Zheng F, Moon C, Schlüter OM, Wang H.

J Neurochem. 2012 Jul;122(2):295-307. doi: 10.1111/j.1471-4159.2012.07787.x. Epub 2012 Jun 6.

12.

Preferential inhibition by antidiarrheic 2-methoxy-4-methylphenol of Ca(2+) influx across acquired N-methyl-D-aspartate receptor channels composed of NR1/NR2B subunit assembly.

Nakamichi N, Fukumori R, Takarada T, Kambe Y, Yamamoto T, Matsushima N, Moriguchi N, Yoneda Y.

J Neurosci Res. 2010 Aug 15;88(11):2483-93. doi: 10.1002/jnr.22399.

PMID:
20623618
14.

Role of the NR2A/2B subunits of the N-methyl-D-aspartate receptor in glutamate-induced glutamic acid decarboxylase alteration in cortical GABAergic neurons in vitro.

Monnerie H, Hsu FC, Coulter DA, Le Roux PD.

Neuroscience. 2010 Dec 29;171(4):1075-90. doi: 10.1016/j.neuroscience.2010.09.050. Epub 2010 Oct 20.

PMID:
20923697
15.

Mechanisms of regulation of tyrosine phosphorylation of NMDA receptor subunit 2B after cerebral ischemia/reperfusion.

Pei L, Li Y, Zhang GY, Cui ZC, Zhu ZM.

Acta Pharmacol Sin. 2000 Aug;21(8):695-700.

16.

Regulation of N-methyl-D-aspartate receptors by calpain in cortical neurons.

Wu HY, Yuen EY, Lu YF, Matsushita M, Matsui H, Yan Z, Tomizawa K.

J Biol Chem. 2005 Jun 3;280(22):21588-93. Epub 2005 Mar 24.

17.

Protein kinase C promotes N-methyl-D-aspartate (NMDA) receptor trafficking by indirectly triggering calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation.

Yan JZ, Xu Z, Ren SQ, Hu B, Yao W, Wang SH, Liu SY, Lu W.

J Biol Chem. 2011 Jul 15;286(28):25187-200. doi: 10.1074/jbc.M110.192708. Epub 2011 May 23.

18.

Mu-opioid receptors transiently activate the Akt-nNOS pathway to produce sustained potentiation of PKC-mediated NMDAR-CaMKII signaling.

Sánchez-Blázquez P, Rodríguez-Muñoz M, Garzón J.

PLoS One. 2010 Jun 23;5(6):e11278. doi: 10.1371/journal.pone.0011278.

19.
20.

N-methyl-D-aspartate-evoked adenosine and inosine release from neurons requires extracellular calcium.

Zamzow CR, Bose R, Parkinson FE.

Can J Physiol Pharmacol. 2009 Oct;87(10):850-8. doi: 10.1139/Y09-075.

PMID:
20052011

Supplemental Content

Support Center