Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Low temperature chemically synthesized rutile TiO2 photoanodes with high electron lifetime for organic dye-sensitized solar cells.

Ambade SB, Ambade RB, Mane RS, Lee GW, Shaikh SF, Patil SA, Joo OS, Han SH, Lee SH.

Chem Commun (Camb). 2013 Apr 11;49(28):2921-3. doi: 10.1039/c3cc00310h.

PMID:
23459589
2.

Hierarchically structured microspheres for high-efficiency rutile TiO(2)-based dye-sensitized solar cells.

Ye M, Zheng D, Wang M, Chen C, Liao W, Lin C, Lin Z.

ACS Appl Mater Interfaces. 2014 Feb 26;6(4):2893-901. doi: 10.1021/am405442n.

PMID:
24467178
3.

Non-prefabricated nanocrystal mesoporous TiO2-based photoanodes tuned by a layer-by-layer and rapid thermal process.

Tao J, Sun Y, Ge M, Chen X, Dai N.

ACS Appl Mater Interfaces. 2010 Jan;2(1):265-9. doi: 10.1021/am9006726.

PMID:
20356244
4.

The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes.

Ding J, Li Y, Hu H, Bai L, Zhang S, Yuan N.

Nanoscale Res Lett. 2013 Jan 3;8(1):9. doi: 10.1186/1556-276X-8-9.

5.

Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.

Li G, Richter CP, Milot RL, Cai L, Schmuttenmaer CA, Crabtree RH, Brudvig GW, Batista VS.

Dalton Trans. 2009 Dec 7;(45):10078-85. doi: 10.1039/b908686b.

PMID:
19904436
6.

Analysis of the electron transport properties in dye-sensitized solar cells using highly ordered TiO2 nanotubes and TiO2 nanoparticles.

Kao MJ, Chang H, Cho KC, Kuo CG, Chien SH, Liang SS.

J Nanosci Nanotechnol. 2012 Apr;12(4):3515-9.

PMID:
22849158
7.

Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application.

Peng W, Yanagida M, Han L, Ahmed S.

Nanotechnology. 2011 Jul 8;22(27):275709. doi: 10.1088/0957-4484/22/27/275709.

PMID:
21597134
8.

Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes.

Wang H, Wang B, Yu J, Hu Y, Xia C, Zhang J, Liu R.

Sci Rep. 2015 Mar 23;5:9305. doi: 10.1038/srep09305.

9.

Combined strategy to realize efficient photoelectrodes for low temperature fabrication of dye solar cells.

Alberti A, De Marco L, Pellegrino G, Condorelli GG, Giannuzzi R, Scarfiello R, Manca M, Spinella C, Gigli G, La Magna A.

ACS Appl Mater Interfaces. 2014 May 14;6(9):6425-33. doi: 10.1021/am4058524.

PMID:
24694230
10.

Morphology-controllable 1D-3D nanostructured TiO2 bilayer photoanodes for dye-sensitized solar cells.

Sun Z, Kim JH, Zhao Y, Attard D, Dou SX.

Chem Commun (Camb). 2013 Feb 1;49(10):966-8. doi: 10.1039/c2cc37212f.

PMID:
23169305
11.
12.

Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells.

Chandiran AK, Abdi-Jalebi M, Nazeeruddin MK, Grätzel M.

ACS Nano. 2014 Mar 25;8(3):2261-8. doi: 10.1021/nn405535j.

PMID:
24552648
13.

Effect of TiO2 nanotubes with TiCl4 treatment on the photoelectrode of dye-sensitized solar cells.

Meen TH, Jhuo YT, Chao SM, Lin NY, Ji LW, Tsai JK, Wu TC, Chen WR, Water W, Huang CJ.

Nanoscale Res Lett. 2012 Oct 23;7(1):579. doi: 10.1186/1556-276X-7-579.

14.

Formation and photovoltaic performance of few-layered graphene-decorated TiO2 nanocrystals used in dye-sensitized solar cells.

Liu Y, Cheng Y, Shu W, Peng Z, Chen K, Zhou J, Chen W, Zakharova GS.

Nanoscale. 2014 Jun 21;6(12):6755-62. doi: 10.1039/c4nr00288a.

PMID:
24824192
15.

Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency.

Yella A, Heiniger LP, Gao P, Nazeeruddin MK, Grätzel M.

Nano Lett. 2014 May 14;14(5):2591-6. doi: 10.1021/nl500399m.

PMID:
24628563
16.

Room temperature synthesis of rutile TiO2 hierarchical nanoneedle flower morphology for dye sensitized solar cell.

Hyam RS, Bhosale RK, Lee W, Han SH, Hannoyer B, Ogale SB.

J Nanosci Nanotechnol. 2010 Sep;10(9):5894-8.

PMID:
21133123
17.

TiO2-grafted multi-walled carbon nanotubes for dye-sensitized solar cells.

Hwang YH, Kim H, Zong K, Pyo M.

J Nanosci Nanotechnol. 2012 May;12(5):4127-31.

PMID:
22852357
18.

Effect of TiCl4 Post-Treatment on the Embedded-Type TiO2 Nanotubes Dye-Sensitized Solar Cells.

Kim KP, Kim JH, Hwang DK, Sung SJ, Heo YW.

J Nanosci Nanotechnol. 2015 Oct;15(10):7845-7.

PMID:
26726426
19.

Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%.

Sauvage F, Chen D, Comte P, Huang F, Heiniger LP, Cheng YB, Caruso RA, Graetzel M.

ACS Nano. 2010 Aug 24;4(8):4420-5. doi: 10.1021/nn1010396.

PMID:
20731428
20.

Low-temperature crystalline titanium dioxide by atomic layer deposition for dye-sensitized solar cells.

Chandiran AK, Yella A, Stefik M, Heiniger LP, Comte P, Nazeeruddin MK, Grätzel M.

ACS Appl Mater Interfaces. 2013 Apr 24;5(8):3487-93. doi: 10.1021/am400866s.

PMID:
23506374
Items per page

Supplemental Content

Support Center