Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 187

1.

C-H stretch for probing kinetics of self-assembly into macromolecular chiral structures at interfaces by chiral sum frequency generation spectroscopy.

Wang Z, Fu L, Yan EC.

Langmuir. 2013 Mar 26;29(12):4077-83. doi: 10.1021/la304954h. Epub 2013 Mar 15.

PMID:
23458423
2.

Chiral sum frequency generation for in situ probing proton exchange in antiparallel β-sheets at interfaces.

Fu L, Xiao D, Wang Z, Batista VS, Yan EC.

J Am Chem Soc. 2013 Mar 6;135(9):3592-8. doi: 10.1021/ja3119527. Epub 2013 Feb 19.

PMID:
23394622
3.

Chiral sum frequency generation spectroscopy for characterizing protein secondary structures at interfaces.

Fu L, Liu J, Yan EC.

J Am Chem Soc. 2011 Jun 1;133(21):8094-7. doi: 10.1021/ja201575e. Epub 2011 May 6.

PMID:
21534603
4.

Proteins at interfaces probed by chiral vibrational sum frequency generation spectroscopy.

Yan EC, Wang Z, Fu L.

J Phys Chem B. 2015 Feb 19;119(7):2769-85. doi: 10.1021/jp508926e. Epub 2015 Jan 21.

PMID:
25565412
5.

Broad-Bandwidth Chiral Sum Frequency Generation Spectroscopy for Probing the Kinetics of Proteins at Interfaces.

Wang Z, Fu L, Ma G, Yan EC.

Langmuir. 2015 Oct 27;31(42):11384-98. doi: 10.1021/acs.langmuir.5b02100. Epub 2015 Jul 30.

6.

Chiral vibrational structures of proteins at interfaces probed by sum frequency generation spectroscopy.

Fu L, Wang Z, Yan EC.

Int J Mol Sci. 2011;12(12):9404-25. doi: 10.3390/ijms12129404. Epub 2011 Dec 16. Review.

7.

N-H stretching modes around 3300 wavenumber from peptide backbones observed by chiral sum frequency generation vibrational spectroscopy.

Fu L, Wang Z, Yan EC.

Chirality. 2014 Sep;26(9):521-4. doi: 10.1002/chir.22306. Epub 2014 Mar 7.

PMID:
24610602
8.

In situ misfolding of human islet amyloid polypeptide at interfaces probed by vibrational sum frequency generation.

Fu L, Ma G, Yan EC.

J Am Chem Soc. 2010 Apr 21;132(15):5405-12. doi: 10.1021/ja909546b.

PMID:
20337445
9.

Supramolecular bidentate ligands by metal-directed in situ formation of antiparallel beta-sheet structures and application in asymmetric catalysis.

Laungani AC, Slattery JM, Krossing I, Breit B.

Chemistry. 2008;14(15):4488-502. doi: 10.1002/chem.200800359.

PMID:
18449870
10.

Characterization of Parallel β-Sheets at Interfaces by Chiral Sum Frequency Generation Spectroscopy.

Fu L, Wang Z, Psciuk BT, Xiao D, Batista VS, Yan EC.

J Phys Chem Lett. 2015 Apr 16;6(8):1310-5. doi: 10.1021/acs.jpclett.5b00326. Epub 2015 Mar 27.

PMID:
26263128
11.

Communication: Probing the absolute configuration of chiral molecules at aqueous interfaces.

Lotze S, Versluis J, Olijve LL, van Schijndel L, Milroy LG, Voets IK, Bakker HJ.

J Chem Phys. 2015 Nov 28;143(20):201101. doi: 10.1063/1.4936403.

PMID:
26627942
12.

Handedness inversion of chiral amphiphilic molecular assemblies evidenced by supramolecular chiral imprinting in mesoporous silica assemblies.

Xie J, Qiu H, Che S.

Chemistry. 2012 Feb 27;18(9):2559-64. doi: 10.1002/chem.201102146. Epub 2012 Jan 20.

PMID:
22266981
13.

Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation.

Mondal JA, Nihonyanagi S, Yamaguchi S, Tahara T.

J Am Chem Soc. 2012 May 9;134(18):7842-50. doi: 10.1021/ja300658h. Epub 2012 Apr 26.

PMID:
22533664
14.

Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces.

Jubb AM, Hua W, Allen HC.

Acc Chem Res. 2012 Jan 17;45(1):110-9. doi: 10.1021/ar200152v. Epub 2011 Nov 8.

PMID:
22066822
15.

Sheet-like assemblies of charged amphiphilic α/β-peptides at the air-water interface.

Segman-Magidovich S, Lee MR, Vaiser V, Struth B, Gellman SH, Rapaport H.

Chemistry. 2011 Dec 23;17(52):14857-66. doi: 10.1002/chem.201101775. Epub 2011 Nov 22.

PMID:
22105992
16.

Cooperative and reciprocal chiral structure formation of an alanine-based peptide confined at the surface of cationic surfactant membranes.

Kiagus-Armad R, Brizard A, Tang C, Blatchly R, Desbat B, Oda R.

Chemistry. 2011 Aug 29;17(36):9999-10009. doi: 10.1002/chem.201100828. Epub 2011 Jul 19.

PMID:
21774004
17.

Hierarchical self-assembly of amphiphilic peptide dendrons: evolution of diverse chiral nanostructures through hydrogel formation over a wide pH range.

Duan P, Qin L, Zhu X, Liu M.

Chemistry. 2011 May 27;17(23):6389-95. doi: 10.1002/chem.201003049. Epub 2011 Apr 27.

PMID:
21538601
18.

Supramolecular assembly of strongly chemisorbed size- and shape-defined chiral clusters: S- and R-alanine on Cu(110).

Barlow SM, Louafi S, Le Roux D, Williams J, Muryn C, Haq S, Raval R.

Langmuir. 2004 Aug 17;20(17):7171-6.

PMID:
15301502
19.

Surface structures of an amphiphilic tri-block copolymer in air and in water probed using sum frequency generation vibrational spectroscopy.

Kristalyn CB, Lu X, Weinman CJ, Ober CK, Kramer EJ, Chen Z.

Langmuir. 2010 Jul 6;26(13):11337-43. doi: 10.1021/la100701b.

PMID:
20465236
20.

Probing alpha-helical and beta-sheet structures of peptides at solid/liquid interfaces with SFG.

Chen X, Wang J, Sniadecki JJ, Even MA, Chen Z.

Langmuir. 2005 Mar 29;21(7):2662-4.

PMID:
15779931

Supplemental Content

Support Center