Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116

1.

Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure.

Taylor CR, Hanna M, Behnke BJ, Stabley JN, McCullough DJ, Davis RT 3rd, Ghosh P, Papadopoulos A, Muller-Delp JM, Delp MD.

FASEB J. 2013 Jun;27(6):2282-92. doi: 10.1096/fj.12-222687. Epub 2013 Mar 1.

2.

Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice.

Sofronova SI, Tarasova OS, Gaynullina D, Borzykh AA, Behnke BJ, Stabley JN, McCullough DJ, Maraj JJ, Hanna M, Muller-Delp JM, Vinogradova OL, Delp MD.

J Appl Physiol (1985). 2015 Apr 1;118(7):830-8. doi: 10.1152/japplphysiol.00976.2014. Epub 2015 Jan 15.

3.

Spaceflight reduces vasoconstrictor responsiveness of skeletal muscle resistance arteries in mice.

Stabley JN, Dominguez JM 2nd, Dominguez CE, Mora Solis FR, Ahlgren J, Behnke BJ, Muller-Delp JM, Delp MD.

J Appl Physiol (1985). 2012 Nov;113(9):1439-45. doi: 10.1152/japplphysiol.00772.2012. Epub 2012 Sep 13.

PMID:
22984246
4.

Effects of spaceflight and ground recovery on mesenteric artery and vein constrictor properties in mice.

Behnke BJ, Stabley JN, McCullough DJ, Davis RT 3rd, Dominguez JM 2nd, Muller-Delp JM, Delp MD.

FASEB J. 2013 Jan;27(1):399-409. doi: 10.1096/fj.12-218503. Epub 2012 Oct 25.

5.

Simulated microgravity enhances cerebral artery vasoconstriction and vascular resistance through endothelial nitric oxide mechanism.

Wilkerson MK, Lesniewski LA, Golding EM, Bryan RM Jr, Amin A, Wilson E, Delp MD.

Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1652-61. Epub 2004 Dec 2.

PMID:
15576439
6.

Human cerebral autoregulation before, during and after spaceflight.

Iwasaki K, Levine BD, Zhang R, Zuckerman JH, Pawelczyk JA, Diedrich A, Ertl AC, Cox JF, Cooke WH, Giller CA, Ray CA, Lane LD, Buckey JC Jr, Baisch FJ, Eckberg DL, Robertson D, Biaggioni I, Blomqvist CG.

J Physiol. 2007 Mar 15;579(Pt 3):799-810. Epub 2006 Dec 21.

7.

Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts.

Hughson RL, Robertson AD, Arbeille P, Shoemaker JK, Rush JW, Fraser KS, Greaves DK.

Am J Physiol Heart Circ Physiol. 2016 Mar 1;310(5):H628-38. doi: 10.1152/ajpheart.00802.2015. Epub 2016 Jan 8.

PMID:
26747504
8.

Spaceflight and hindlimb suspension disuse models in mice.

Milstead JR, Simske SJ, Bateman TA.

Biomed Sci Instrum. 2004;40:105-10.

PMID:
15133943
9.

Osteoprotegerin is an effective countermeasure for spaceflight-induced bone loss in mice.

Lloyd SA, Morony SE, Ferguson VL, Simske SJ, Stodieck LS, Warmington KS, Livingston EW, Lacey DL, Kostenuik PJ, Bateman TA.

Bone. 2015 Dec;81:562-72. doi: 10.1016/j.bone.2015.08.021. Epub 2015 Aug 28.

PMID:
26318907
10.

[Differential effect of simulated microgravity on myogenic tone of middle cerebral and mesenteric small arteries in rats].

Lin LJ, Bao JX, Bai YG, Zhang LF, Ma J.

Sheng Li Xue Bao. 2009 Feb 25;61(1):27-34. Chinese.

11.

Effects of spaceflight on the murine mandible: Possible factors mediating skeletal changes in non-weight bearing bones of the head.

Ghosh P, Stabley JN, Behnke BJ, Allen MR, Delp MD.

Bone. 2016 Feb;83:156-61. doi: 10.1016/j.bone.2015.11.001. Epub 2015 Nov 9.

PMID:
26545335
12.

Microgravity-induced changes in aortic stiffness and their role in orthostatic intolerance.

Tuday EC, Meck JV, Nyhan D, Shoukas AA, Berkowitz DE.

J Appl Physiol (1985). 2007 Mar;102(3):853-8. Epub 2006 Nov 2.

PMID:
17082368
13.

Fifteen days of microgravity causes growth in calvaria of mice.

Zhang B, Cory E, Bhattacharya R, Sah R, Hargens AR.

Bone. 2013 Oct;56(2):290-5. doi: 10.1016/j.bone.2013.06.009. Epub 2013 Jun 20.

14.

Cerebral artery reactivity changes during pregnancy and the postpartum period: a role in eclampsia?

Cipolla MJ, Vitullo L, McKinnon J.

Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2127-32. Epub 2004 Jan 29.

PMID:
14751854
15.

Contrasting effects of simulated microgravity with and without daily -Gx gravitation on structure and function of cerebral and mesenteric small arteries in rats.

Lin LJ, Gao F, Bai YG, Bao JX, Huang XF, Ma J, Zhang LF.

J Appl Physiol (1985). 2009 Dec;107(6):1710-21. doi: 10.1152/japplphysiol.00493.2009. Epub 2009 Oct 8.

PMID:
19815720
16.

Endothelium-dependent vasodilation of cerebral arteries is altered with simulated microgravity through nitric oxide synthase and EDHF mechanisms.

Prisby RD, Wilkerson MK, Sokoya EM, Bryan RM Jr, Wilson E, Delp MD.

J Appl Physiol (1985). 2006 Jul;101(1):348-53. Epub 2006 Apr 20.

PMID:
16627679
17.

Neuro-Ophthalmology of Space Flight.

Lee AG, Tarver WJ, Mader TH, Gibson CR, Hart SF, Otto CA.

J Neuroophthalmol. 2016 Mar;36(1):85-91. doi: 10.1097/WNO.0000000000000334. Review.

PMID:
26828842
18.

Spaceflight-Induced Intracranial Hypertension.

Michael AP, Marshall-Bowman K.

Aerosp Med Hum Perform. 2015 Jun;86(6):557-62. doi: 10.3357/AMHP.4284.2015. Review.

PMID:
26099128
19.

Acute and chronic head-down tail suspension diminishes cerebral perfusion in rats.

Wilkerson MK, Colleran PN, Delp MD.

Am J Physiol Heart Circ Physiol. 2002 Jan;282(1):H328-34.

PMID:
11748078
20.

MR-derived cerebral spinal fluid hydrodynamics as a marker and a risk factor for intracranial hypertension in astronauts exposed to microgravity.

Kramer LA, Hasan KM, Sargsyan AE, Wolinsky JS, Hamilton DR, Riascos RF, Carson WK, Heimbigner J, Patel VS, Romo S, Otto C.

J Magn Reson Imaging. 2015 Dec;42(6):1560-71. doi: 10.1002/jmri.24923. Epub 2015 Apr 27.

PMID:
25920095

Supplemental Content

Support Center