Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 134

1.

Habitat-specific foraging and sex determine mercury concentrations in sympatric benthic and limnetic ecotypes of threespine stickleback.

Willacker JJ, von Hippel FA, Ackerly KL, O'Hara TM.

Environ Toxicol Chem. 2013 Jul;32(7):1623-30. doi: 10.1002/etc.2213. Epub 2013 May 10.

2.

Mercury trophic transfer in a eutrophic lake: the importance of habitat-specific foraging.

Eagles-Smith CA, Suchanek TH, Colwell AE, Anderson NL.

Ecol Appl. 2008 Dec;18(8 Suppl):A196-212.

PMID:
19475925
3.

Mercury biomagnification in three geothermally-influenced lakes differing in chemistry and algal biomass.

Verburg P, Hickey CW, Phillips N.

Sci Total Environ. 2014 Sep 15;493:342-54. doi: 10.1016/j.scitotenv.2014.05.097. Epub 2014 Jun 19.

PMID:
24951892
4.

Bioaccumulation and biomagnification of mercury in African lakes: the importance of trophic status.

Poste AE, Muir DC, Guildford SJ, Hecky RE.

Sci Total Environ. 2015 Feb 15;506-507:126-36. doi: 10.1016/j.scitotenv.2014.10.094. Epub 2014 Nov 17.

5.

The temporal window of ecological adaptation in postglacial lakes: a comparison of head morphology, trophic position and habitat use in Norwegian threespine stickleback populations.

Østbye K, Harrod C, Gregersen F, Klepaker T, Schulz M, Schluter D, Vøllestad LA.

BMC Evol Biol. 2016 May 13;16:102. doi: 10.1186/s12862-016-0676-2.

6.

Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic.

Lescord GL, Kidd KA, Kirk JL, O'Driscoll NJ, Wang X, Muir DC.

Sci Total Environ. 2015 Mar 15;509-510:195-205. doi: 10.1016/j.scitotenv.2014.04.133. Epub 2014 Jun 6.

PMID:
24909711
7.

Mercury concentrations of a resident freshwater forage fish at Adak Island, Aleutian Archipelago, Alaska.

Kenney LA, von Hippel FA, Willacker JJ, O'Hara TM.

Environ Toxicol Chem. 2012 Nov;31(11):2647-52. doi: 10.1002/etc.1990. Epub 2012 Sep 17.

8.

Specialization of trophic position and habitat use by sticklebacks in an adaptive radiation.

Matthews B, Marchinko KB, Bolnick DI, Mazumder A.

Ecology. 2010 Apr;91(4):1025-34.

PMID:
20462117
9.

Temporal variation in fish mercury concentrations within lakes from the western Aleutian Archipelago, Alaska.

Kenney LA, Eagles-Smith CA, Ackerman JT, von Hippel FA.

PLoS One. 2014 Jul 16;9(7):e102244. doi: 10.1371/journal.pone.0102244. eCollection 2014.

10.

Bioaccumulation and trophic transfer of mercury in a food web from a large, shallow, hypereutrophic lake (Lake Taihu) in China.

Wang S, Li B, Zhang M, Xing D, Jia Y, Wei C.

Environ Sci Pollut Res Int. 2011 Aug;19(7):2820-31. doi: 10.1007/s11356-012-0787-2. Epub 2012 Feb 15.

PMID:
22351254
11.

Differential mercury transfer in the aquatic food web of a double basined lake associated with selenium and habitat.

Arcagni M, Campbell L, Arribére MA, Marvin-Dipasquale M, Rizzo A, Ribeiro Guevara S.

Sci Total Environ. 2013 Jun 1;454-455:170-80. doi: 10.1016/j.scitotenv.2013.03.008. Epub 2013 Mar 27.

PMID:
23542490
12.

Key contributors to variations in fish mercury within and among freshwater reservoirs in Oklahoma, USA.

Dong Z, Lynch RA, Schaider LA.

Environ Sci Process Impacts. 2016 Feb;18(2):222-36. doi: 10.1039/c5em00495k.

13.

Using sulfur stable isotopes to assess mercury bioaccumulation and biomagnification in temperate lake food webs.

Clayden MG, Lescord GL, Kidd KA, Wang X, Muir DC, O'Driscoll NJ.

Environ Toxicol Chem. 2017 Mar;36(3):661-670. doi: 10.1002/etc.3615. Epub 2016 Oct 28.

PMID:
27648524
14.

Age and trophic position dominate bioaccumulation of mercury and organochlorines in the food web of Lake Washington.

McIntyre JK, Beauchamp DA.

Sci Total Environ. 2007 Jan 1;372(2-3):571-84. Epub 2006 Dec 6.

PMID:
17157357
15.

Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics.

Kidd KA, Muir DC, Evans MS, Wang X, Whittle M, Swanson HK, Johnston T, Guildford S.

Sci Total Environ. 2012 Nov 1;438:135-43. doi: 10.1016/j.scitotenv.2012.08.057. Epub 2012 Sep 13.

PMID:
22982939
16.

Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis.

Lavoie RA, Hebert CE, Rail JF, Braune BM, Yumvihoze E, Hill LG, Lean DR.

Sci Total Environ. 2010 Oct 15;408(22):5529-39. doi: 10.1016/j.scitotenv.2010.07.053.

PMID:
20810146
17.

Diet and habitat use influence Hg and Cd transfer to fish and consequent biomagnification in a highly contaminated area: Augusta Bay (Mediterranean Sea).

Signa G, Mazzola A, Tramati CD, Vizzini S.

Environ Pollut. 2017 Nov;230:394-404. doi: 10.1016/j.envpol.2017.06.027. Epub 2017 Jul 1.

PMID:
28675849
18.

Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes.

Eagles-Smith CA, Herring G, Johnson B, Graw R.

Environ Pollut. 2016 May;212:279-289. doi: 10.1016/j.envpol.2016.01.049. Epub 2016 Feb 5.

PMID:
26854697
19.

Bioaccumulation and biomagnification of mercury and selenium in the Sarasota Bay ecosystem.

Hong YS, Hull P, Rifkin E, Bouwer EJ.

Environ Toxicol Chem. 2013 Apr;32(5):1143-52. doi: 10.1002/etc.2169. Epub 2013 Mar 29.

PMID:
23400925
20.

Impacts of food web structure and feeding behavior on mercury exposure in Greenland Sharks (Somniosus microcephalus).

McMeans BC, Arts MT, Fisk AT.

Sci Total Environ. 2015 Mar 15;509-510:216-25. doi: 10.1016/j.scitotenv.2014.01.128. Epub 2014 Mar 11.

PMID:
24630590

Supplemental Content

Support Center