Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 141

1.

Effects of sulfate groups on the adsorption and activity of cellulases on cellulose substrates.

Jiang F, Kittle JD, Tan X, Esker AR, Roman M.

Langmuir. 2013 Mar 12;29(10):3280-91. doi: 10.1021/la3040193. Epub 2013 Mar 1.

PMID:
23452241
2.

In situ monitoring of cellulase activity by microgravimetry with a quartz crystal microbalance.

Hu G, Heitmann JA Jr, Rojas OJ.

J Phys Chem B. 2009 Nov 5;113(44):14761-8. doi: 10.1021/jp907155v.

PMID:
19827780
3.

Non-ionic surfactants do not consistently improve the enzymatic hydrolysis of pure cellulose.

Zhou Y, Chen H, Qi F, Zhao X, Liu D.

Bioresour Technol. 2015 Apr;182:136-43. doi: 10.1016/j.biortech.2015.01.137. Epub 2015 Feb 7.

PMID:
25689307
4.

Surface structural dynamics of enzymatic cellulose degradation, revealed by combined kinetic and atomic force microscopy studies.

Eibinger M, Bubner P, Ganner T, Plank H, Nidetzky B.

FEBS J. 2014 Jan;281(1):275-90. doi: 10.1111/febs.12594. Epub 2013 Dec 10.

5.

Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.

Zheng Y, Pan Z, Zhang R, Jenkins BM.

Biotechnol Bioeng. 2009 Apr 15;102(6):1558-69. doi: 10.1002/bit.22197.

PMID:
19061240
6.

Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content.

Martín-Sampedro R, Rahikainen JL, Johansson LS, Marjamaa K, Laine J, Kruus K, Rojas OJ.

Biomacromolecules. 2013 Apr 8;14(4):1231-9. doi: 10.1021/bm400230s. Epub 2013 Mar 25.

PMID:
23484974
7.

Competitive sorption kinetics of inhibited endo- and exoglucanases on a model cellulose substrate.

Maurer SA, Bedbrook CN, Radke CJ.

Langmuir. 2012 Oct 16;28(41):14598-608. doi: 10.1021/la3024524. Epub 2012 Oct 1.

PMID:
22966968
8.

Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring.

Kittle JD, Du X, Jiang F, Qian C, Heinze T, Roman M, Esker AR.

Biomacromolecules. 2011 Aug 8;12(8):2881-7. doi: 10.1021/bm200352q. Epub 2011 Jun 24.

PMID:
21574564
9.

Enzymatic digestion of partially and fully regenerated cellulose model films from trimethylsilyl cellulose.

Mohan T, Kargl R, Doliška A, Ehmann HM, Ribitsch V, Stana-Kleinschek K.

Carbohydr Polym. 2013 Mar 1;93(1):191-8. doi: 10.1016/j.carbpol.2012.02.033. Epub 2012 Feb 25.

PMID:
23465919
10.

Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate.

Lou H, Wang M, Lai H, Lin X, Zhou M, Yang D, Qiu X.

Bioresour Technol. 2013 Oct;146:478-84. doi: 10.1016/j.biortech.2013.07.115. Epub 2013 Jul 30.

PMID:
23958680
11.

Neutron reflectometry and QCM-D study of the interaction of cellulases with films of amorphous cellulose.

Cheng G, Liu Z, Murton JK, Jablin M, Dubey M, Majewski J, Halbert C, Browning J, Ankner J, Akgun B, Wang C, Esker AR, Sale KL, Simmons BA, Kent MS.

Biomacromolecules. 2011 Jun 13;12(6):2216-24. doi: 10.1021/bm200305u. Epub 2011 May 23.

PMID:
21553874
12.

Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates.

Tu M, Chandra RP, Saddler JN.

Biotechnol Prog. 2007 Mar-Apr;23(2):398-406. Epub 2007 Mar 23.

PMID:
17378581
13.

Cellulose crystallinity--a key predictor of the enzymatic hydrolysis rate.

Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS.

FEBS J. 2010 Mar;277(6):1571-82. doi: 10.1111/j.1742-4658.2010.07585.x. Epub 2010 Feb 10.

14.

Interactions between Cellulolytic Enzymes with Native, Autohydrolysis, and Technical Lignins and the Effect of a Polysorbate Amphiphile in Reducing Nonproductive Binding.

Fritz C, Ferrer A, Salas C, Jameel H, Rojas OJ.

Biomacromolecules. 2015 Dec 14;16(12):3878-88. doi: 10.1021/acs.biomac.5b01203. Epub 2015 Nov 25.

PMID:
26565921
15.

Effect of Nonionic Surfactants on Dispersion and Polar Interactions in the Adsorption of Cellulases onto Lignin.

Jiang F, Qian C, Esker AR, Roman M.

J Phys Chem B. 2017 Oct 19;121(41):9607-9620. doi: 10.1021/acs.jpcb.7b07716. Epub 2017 Oct 6.

PMID:
28926703
16.

Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques.

Wang QQ, He Z, Zhu Z, Zhang YH, Ni Y, Luo XL, Zhu JY.

Biotechnol Bioeng. 2012 Feb;109(2):381-9. doi: 10.1002/bit.23330. Epub 2011 Sep 21.

PMID:
21915856
17.

Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates.

Meng X, Ragauskas AJ.

Curr Opin Biotechnol. 2014 Jun;27:150-8. doi: 10.1016/j.copbio.2014.01.014. Epub 2014 Feb 16. Review.

PMID:
24549148
18.

Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure.

Ahola S, Turon X, Osterberg M, Laine J, Rojas OJ.

Langmuir. 2008 Oct 21;24(20):11592-9. doi: 10.1021/la801550j. Epub 2008 Sep 9.

PMID:
18778090
19.
20.

Factors affecting cellulose hydrolysis based on inactivation of adsorbed enzymes.

Ye Z, Berson RE.

Bioresour Technol. 2014 Sep;167:582-6. doi: 10.1016/j.biortech.2014.06.070. Epub 2014 Jun 26.

PMID:
25027809

Supplemental Content

Support Center