Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Genetic and genomic analysis of Rhizoctonia solani interactions with Arabidopsis; evidence of resistance mediated through NADPH oxidases.

Foley RC, Gleason CA, Anderson JP, Hamann T, Singh KB.

PLoS One. 2013;8(2):e56814. doi: 10.1371/journal.pone.0056814. Epub 2013 Feb 25.

2.

Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein.

Torres MA, Morales J, Sánchez-Rodríguez C, Molina A, Dangl JL.

Mol Plant Microbe Interact. 2013 Jun;26(6):686-94. doi: 10.1094/MPMI-10-12-0236-R.

3.
4.

AtRbohF contributes to non-host resistance to Magnaporthe oryzae in Arabidopsis.

Nozaki M, Kita K, Kodaira T, Ishikawa A.

Biosci Biotechnol Biochem. 2013;77(6):1323-5. Epub 2013 Jun 7.

5.

Early induction of the Arabidopsis GSTF8 promoter by specific strains of the fungal pathogen Rhizoctonia solani.

Perl-Treves R, Foley RC, Chen W, Singh KB.

Mol Plant Microbe Interact. 2004 Jan;17(1):70-80.

6.

Genome analysis of the sugar beet pathogen Rhizoctonia solani AG2-2IIIB revealed high numbers in secreted proteins and cell wall degrading enzymes.

Wibberg D, Andersson L, Tzelepis G, Rupp O, Blom J, Jelonek L, Pühler A, Fogelqvist J, Varrelmann M, Schlüter A, Dixelius C.

BMC Genomics. 2016 Mar 17;17:245. doi: 10.1186/s12864-016-2561-1.

7.

Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem.

Pogány M, von Rad U, Grün S, Dongó A, Pintye A, Simoneau P, Bahnweg G, Kiss L, Barna B, Durner J.

Plant Physiol. 2009 Nov;151(3):1459-75. doi: 10.1104/pp.109.141994. Epub 2009 Sep 2.

8.

Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8.

Hane JK, Anderson JP, Williams AH, Sperschneider J, Singh KB.

PLoS Genet. 2014 May 8;10(5):e1004281. doi: 10.1371/journal.pgen.1004281. eCollection 2014 May.

9.

AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis.

Li N, Sun L, Zhang L, Song Y, Hu P, Li C, Hao FS.

Planta. 2015 Mar;241(3):591-602. doi: 10.1007/s00425-014-2204-1. Epub 2014 Nov 16.

PMID:
25399352
10.

Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling.

Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, Schenk PM, Botella JR.

Plant J. 2009 Apr;58(1):69-81. doi: 10.1111/j.1365-313X.2008.03755.x. Epub 2008 Dec 29.

11.

Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani.

Helliwell EE, Wang Q, Yang Y.

Plant Biotechnol J. 2013 Jan;11(1):33-42. doi: 10.1111/pbi.12004. Epub 2012 Oct 3.

12.

Molecular and genetic aspects of controlling the soilborne necrotrophic pathogens Rhizoctonia and Pythium.

Okubara PA, Dickman MB, Blechl AE.

Plant Sci. 2014 Nov;228:61-70. doi: 10.1016/j.plantsci.2014.02.001. Epub 2014 Feb 12. Review.

PMID:
25438786
13.

Assessment of resistance pathways induced in Arabidopsis thaliana by hypovirulent Rhizoctonia spp. isolates.

Sharon M, Freeman S, Sneh B.

Phytopathology. 2011 Jul;101(7):828-38. doi: 10.1094/PHYTO-09-10-0247.

14.

Arabidopsis NADPH oxidases, AtrbohD and AtrbohF, are essential for jasmonic acid-induced expression of genes regulated by MYC2 transcription factor.

Maruta T, Inoue T, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S.

Plant Sci. 2011 Apr;180(4):655-60. doi: 10.1016/j.plantsci.2011.01.014. Epub 2011 Jan 28.

PMID:
21421415
15.

Glycolate oxidase is an alternative source for H2O2 production during plant defense responses and functions independently from NADPH oxidase.

Rojas C, Mysore KS.

Plant Signal Behav. 2012 Jul;7(7):752-5. doi: 10.4161/psb.20429. Epub 2012 Jul 1.

16.

Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R. solani AG1-IA, AG1-IB, AG3 and AG8 Isolates.

Wibberg D, Rupp O, Blom J, Jelonek L, Kröber M, Verwaaijen B, Goesmann A, Albaum S, Grosch R, Pühler A, Schlüter A.

PLoS One. 2015 Dec 21;10(12):e0144769. doi: 10.1371/journal.pone.0144769. eCollection 2015.

17.

A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF.

Kawarazaki T, Kimura S, Iizuka A, Hanamata S, Nibori H, Michikawa M, Imai A, Abe M, Kaya H, Kuchitsu K.

Biochim Biophys Acta. 2013 Dec;1833(12):2775-80. doi: 10.1016/j.bbamcr.2013.06.024. Epub 2013 Jul 16.

18.

The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity.

Morales J, Kadota Y, Zipfel C, Molina A, Torres MA.

J Exp Bot. 2016 Mar;67(6):1663-76. doi: 10.1093/jxb/erv558. Epub 2016 Jan 21.

PMID:
26798024
19.

AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis.

Jiao Y, Sun L, Song Y, Wang L, Liu L, Zhang L, Liu B, Li N, Miao C, Hao F.

J Exp Bot. 2013 Nov;64(14):4183-92. doi: 10.1093/jxb/ert228. Epub 2013 Aug 20.

PMID:
23963673
20.

Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi.

Delgado-Cerezo M, Sánchez-Rodríguez C, Escudero V, Miedes E, Fernández PV, Jordá L, Hernández-Blanco C, Sánchez-Vallet A, Bednarek P, Schulze-Lefert P, Somerville S, Estevez JM, Persson S, Molina A.

Mol Plant. 2012 Jan;5(1):98-114. doi: 10.1093/mp/ssr082. Epub 2011 Oct 6.

Supplemental Content

Support Center