Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide.

Nielsen M, Alberico E, Baumann W, Drexler HJ, Junge H, Gladiali S, Beller M.

Nature. 2013 Mar 7;495(7439):85-9. doi: 10.1038/nature11891. Epub 2013 Feb 27.

PMID:
23446345
2.

Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts.

Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li YW, Shi C, Wen XD, Ma D.

Nature. 2017 Apr 6;544(7648):80-83. doi: 10.1038/nature21672. Epub 2017 Mar 22.

PMID:
28329760
3.

Carbon Dioxide to Methanol: The Aqueous Catalytic Way at Room Temperature.

Sordakis K, Tsurusaki A, Iguchi M, Kawanami H, Himeda Y, Laurenczy G.

Chemistry. 2016 Oct 24;22(44):15605-15608. doi: 10.1002/chem.201603407. Epub 2016 Sep 21.

PMID:
27582027
4.

Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.

Cortright RD, Davda RR, Dumesic JA.

Nature. 2002 Aug 29;418(6901):964-7.

PMID:
12198544
5.

Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature.

Yu KM, Tong W, West A, Cheung K, Li T, Smith G, Guo Y, Tsang SC.

Nat Commun. 2012;3:1230. doi: 10.1038/ncomms2242.

PMID:
23187630
6.

An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.

Shi L, Yang G, Tao K, Yoneyama Y, Tan Y, Tsubaki N.

Acc Chem Res. 2013 Aug 20;46(8):1838-47. doi: 10.1021/ar300217j. Epub 2013 Mar 4.

PMID:
23459583
7.

Bioinduced Room-Temperature Methanol Reforming.

Heim LE, Thiel D, Gedig C, Deska J, Prechtl MH.

Angew Chem Int Ed Engl. 2015 Aug 24;54(35):10308-12. doi: 10.1002/anie.201503737. Epub 2015 Jul 15.

PMID:
26179443
8.

Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions.

Alberico E, Sponholz P, Cordes C, Nielsen M, Drexler HJ, Baumann W, Junge H, Beller M.

Angew Chem Int Ed Engl. 2013 Dec 23;52(52):14162-6. doi: 10.1002/anie.201307224. Epub 2013 Dec 11.

PMID:
24339396
9.

Methanol-Water Aqueous Phase Reforming by the Assistant of Dehydrogenases at Near-Room Temperature.

Shen Y, Zhan Y, Li S, Ning F, Du Y, Huang Y, He T, Zhou X.

ChemSusChem. 2018 Jan 11. doi: 10.1002/cssc.201702359. [Epub ahead of print]

PMID:
29327513
10.

Hydrogen generation from methanol at near-room temperature.

Shen Y, Zhan Y, Li S, Ning F, Du Y, Huang Y, He T, Zhou X.

Chem Sci. 2017 Nov 1;8(11):7498-7504. doi: 10.1039/c7sc01778b. Epub 2017 Sep 20.

11.

An investigation of synthetic fuel production via chemical looping.

Zeman F, Castaldi M.

Environ Sci Technol. 2008 Apr 15;42(8):2723-7.

PMID:
18497114
12.

Hydrogen storage methods.

Züttel A.

Naturwissenschaften. 2004 Apr;91(4):157-72. Epub 2004 Mar 17. Review.

PMID:
15085273
13.

A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures.

Rodríguez-Lugo RE, Trincado M, Vogt M, Tewes F, Santiso-Quinones G, Grützmacher H.

Nat Chem. 2013 Apr;5(4):342-7. doi: 10.1038/nchem.1595. Epub 2013 Mar 10.

PMID:
23511424
14.

Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.

Li Z, Xu Q.

Acc Chem Res. 2017 Jun 20;50(6):1449-1458. doi: 10.1021/acs.accounts.7b00132. Epub 2017 May 19.

PMID:
28525274
15.

A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol.

Andérez-Fernández M, Vogt LK, Fischer S, Zhou W, Jiao H, Garbe M, Elangovan S, Junge K, Junge H, Ludwig R, Beller M.

Angew Chem Int Ed Engl. 2017 Jan 9;56(2):559-562. doi: 10.1002/anie.201610182. Epub 2016 Dec 2.

PMID:
27910197
16.

Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.

Preuster P, Papp C, Wasserscheid P.

Acc Chem Res. 2017 Jan 17;50(1):74-85. doi: 10.1021/acs.accounts.6b00474. Epub 2016 Dec 22.

PMID:
28004916
18.

Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts.

Shan J, Li M, Allard LF, Lee S, Flytzani-Stephanopoulos M.

Nature. 2017 Nov 29;551(7682):605-608. doi: 10.1038/nature24640.

PMID:
29189776
19.

Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.

Bi QY, Lin JD, Liu YM, He HY, Huang FQ, Cao Y.

Angew Chem Int Ed Engl. 2016 Sep 19;55(39):11849-53. doi: 10.1002/anie.201605961. Epub 2016 Aug 23.

PMID:
27552650
20.

Efficient Reversible Hydrogen Carrier System Based on Amine Reforming of Methanol.

Kothandaraman J, Kar S, Sen R, Goeppert A, Olah GA, Prakash GK.

J Am Chem Soc. 2017 Feb 22;139(7):2549-2552. doi: 10.1021/jacs.6b11637. Epub 2017 Feb 9.

PMID:
28151661

Supplemental Content

Support Center