Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Altered error specificity of RNase H-deficient HIV-1 reverse transcriptases during DNA-dependent DNA synthesis.

Álvarez M, Barrioluengo V, Afonso-Lehmann RN, Menéndez-Arias L.

Nucleic Acids Res. 2013 Apr;41(8):4601-12. doi: 10.1093/nar/gkt109. Epub 2013 Feb 26.

2.

Major groove binding track residues of the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase enhance cDNA synthesis at high temperatures.

Matamoros T, Barrioluengo V, Abia D, Menéndez-Arias L.

Biochemistry. 2013 Dec 23;52(51):9318-28. doi: 10.1021/bi401390x. Epub 2013 Dec 12.

PMID:
24303887
3.

Increased thermostability and fidelity of DNA synthesis of wild-type and mutant HIV-1 group O reverse transcriptases.

Alvarez M, Matamoros T, Menéndez-Arias L.

J Mol Biol. 2009 Oct 2;392(4):872-84. doi: 10.1016/j.jmb.2009.07.081. Epub 2009 Aug 3.

PMID:
19651140
4.

Thermostable HIV-1 group O reverse transcriptase variants with the same fidelity as murine leukaemia virus reverse transcriptase.

Barrioluengo V, Alvarez M, Barbieri D, Menéndez-Arias L.

Biochem J. 2011 Jun 15;436(3):599-607. doi: 10.1042/BJ20101852.

PMID:
21446917
6.

Mechanistic insights into the role of Val75 of HIV-1 reverse transcriptase in misinsertion and mispair extension fidelity of DNA synthesis.

Matamoros T, Kim B, Menéndez-Arias L.

J Mol Biol. 2008 Feb 1;375(5):1234-48. Epub 2007 Nov 17.

PMID:
18155043
7.

Apparent defects in processive DNA synthesis, strand transfer, and primer elongation of Met-184 mutants of HIV-1 reverse transcriptase derive solely from a dNTP utilization defect.

Gao L, Hanson MN, Balakrishnan M, Boyer PL, Roques BP, Hughes SH, Kim B, Bambara RA.

J Biol Chem. 2008 Apr 4;283(14):9196-205. doi: 10.1074/jbc.M710148200. Epub 2008 Jan 24.

8.

Dominance of the E89G substitution in HIV-1 reverse transcriptase in regard to increased polymerase processivity and patterns of pausing.

Quan Y, Inouye P, Liang C, Rong L, Götte M, Wainberg MA.

J Biol Chem. 1998 Aug 21;273(34):21918-25.

11.

Structural determinants of slippage-mediated mutations by human immunodeficiency virus type 1 reverse transcriptase.

Hamburgh ME, Curr KA, Monaghan M, Rao VR, Tripathi S, Preston BD, Sarafianos S, Arnold E, Darden T, Prasad VR.

J Biol Chem. 2006 Mar 17;281(11):7421-8. Epub 2006 Jan 18.

12.

Mutations in the RNase H domain of HIV-1 reverse transcriptase affect the initiation of DNA synthesis and the specificity of RNase H cleavage in vivo.

Julias JG, McWilliams MJ, Sarafianos SG, Arnold E, Hughes SH.

Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9515-20. Epub 2002 Jul 1.

13.

Mutations in the thumb-connection and RNase H domain of HIV type-1 reverse transcriptase of antiretroviral treatment-experienced patients.

Waters JM, O'Neal W, White KL, Wakeford C, Lansdon EB, Harris J, Svarovskaia ES, Miller MD, Borroto-Esoda K.

Antivir Ther. 2009;14(2):231-9.

PMID:
19430098
14.
15.
18.

Temperature effects on the fidelity of a thermostable HIV-1 reverse transcriptase.

Álvarez M, Menéndez-Arias L.

FEBS J. 2014 Jan;281(1):342-51. doi: 10.1111/febs.12605. Epub 2013 Nov 26.

19.

Altering the RNase H primer grip of human immunodeficiency virus reverse transcriptase modifies cleavage specificity.

Rausch JW, Lener D, Miller JT, Julias JG, Hughes SH, Le Grice SF.

Biochemistry. 2002 Apr 16;41(15):4856-65.

PMID:
11939780
20.

Effects of HIV-1 reverse transcriptase connection subdomain mutations on polypurine tract removal and initiation of (+)-strand DNA synthesis.

Betancor G, Álvarez M, Marcelli B, Andrés C, Martínez MA, Menéndez-Arias L.

Nucleic Acids Res. 2015 Feb 27;43(4):2259-70. doi: 10.1093/nar/gkv077. Epub 2015 Feb 6.

Supplemental Content

Support Center