Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Membrane stress caused by octanoic acid in Saccharomyces cerevisiae.

Liu P, Chernyshov A, Najdi T, Fu Y, Dickerson J, Sandmeyer S, Jarboe L.

Appl Microbiol Biotechnol. 2013 Apr;97(7):3239-51. doi: 10.1007/s00253-013-4773-5. Epub 2013 Feb 26.

PMID:
23435986
2.

Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid.

Besada-Lombana PB, Fernandez-Moya R, Fenster J, Da Silva NA.

Biotechnol Bioeng. 2017 Jul;114(7):1531-1538. doi: 10.1002/bit.26288. Epub 2017 Apr 18.

PMID:
28294288
3.

The damaging effects of short chain fatty acids on Escherichia coli membranes.

Royce LA, Liu P, Stebbins MJ, Hanson BC, Jarboe LR.

Appl Microbiol Biotechnol. 2013 Sep;97(18):8317-27. doi: 10.1007/s00253-013-5113-5. Epub 2013 Aug 3.

4.

Activation of two different resistance mechanisms in Saccharomyces cerevisiae upon exposure to octanoic and decanoic acids.

Legras JL, Erny C, Le Jeune C, Lollier M, Adolphe Y, Demuyter C, Delobel P, Blondin B, Karst F.

Appl Environ Microbiol. 2010 Nov;76(22):7526-35. doi: 10.1128/AEM.01280-10. Epub 2010 Sep 17.

5.

Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity.

Royce LA, Yoon JM, Chen Y, Rickenbach E, Shanks JV, Jarboe LR.

Metab Eng. 2015 May;29:180-188. doi: 10.1016/j.ymben.2015.03.014. Epub 2015 Mar 31.

PMID:
25839166
6.

Understanding biocatalyst inhibition by carboxylic acids.

Jarboe LR, Royce LA, Liu P.

Front Microbiol. 2013 Sep 3;4:272. doi: 10.3389/fmicb.2013.00272. Review.

7.

Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content.

You KM, Rosenfield CL, Knipple DC.

Appl Environ Microbiol. 2003 Mar;69(3):1499-503.

8.

New insights into the toxicity mechanism of octanoic and decanoic acids on Saccharomyces cerevisiae.

Borrull A, López-Martínez G, Poblet M, Cordero-Otero R, Rozès N.

Yeast. 2015 May;32(5):451-60. doi: 10.1002/yea.3071. Epub 2015 Apr 8.

9.

Overexpression of OLE1 Enhances Cytoplasmic Membrane Stability and Confers Resistance to Cadmium in Saccharomyces cerevisiae.

Fang Z, Chen Z, Wang S, Shi P, Shen Y, Zhang Y, Xiao J, Huang Z.

Appl Environ Microbiol. 2016 Dec 15;83(1). pii: e02319-16. Print 2017 Jan 1.

11.

An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae.

Henritzi S, Fischer M, Grininger M, Oreb M, Boles E.

Biotechnol Biofuels. 2018 Jun 1;11:150. doi: 10.1186/s13068-018-1149-1. eCollection 2018.

12.

Perfluorinated fatty acids alter merocyanine 540 dye binding to plasma membranes.

Levitt D, Liss A.

J Toxicol Environ Health. 1987;20(3):303-16.

PMID:
3820341
13.
14.

Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae.

Leber C, Choi JW, Polson B, Da Silva NA.

Biotechnol Bioeng. 2016 Apr;113(4):895-900. doi: 10.1002/bit.25839. Epub 2015 Oct 18.

PMID:
26388428
16.

Transcriptomic analysis of carboxylic acid challenge in Escherichia coli: beyond membrane damage.

Royce LA, Boggess E, Fu Y, Liu P, Shanks JV, Dickerson J, Jarboe LR.

PLoS One. 2014 Feb 28;9(2):e89580. doi: 10.1371/journal.pone.0089580. eCollection 2014.

17.

Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

Tan Z, Yoon JM, Nielsen DR, Shanks JV, Jarboe LR.

Metab Eng. 2016 May;35:105-113. doi: 10.1016/j.ymben.2016.02.004. Epub 2016 Feb 11.

PMID:
26875445
18.

Influence of cellular fatty acid composition on the response of Saccharomyces cerevisiae to hydrostatic pressure stress.

de Freitas JM, Bravim F, Buss DS, Lemos EM, Fernandes AA, Fernandes PM.

FEMS Yeast Res. 2012 Dec;12(8):871-8. doi: 10.1111/j.1567-1364.2012.00836.x. Epub 2012 Sep 24.

20.

Specificity of unsaturated fatty acid-regulated expression of the Saccharomyces cerevisiae OLE1 gene.

McDonough VM, Stukey JE, Martin CE.

J Biol Chem. 1992 Mar 25;267(9):5931-6.

Supplemental Content

Support Center