Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 149

1.
2.

Lipopolysaccharide binding protein binds to triacylated and diacylated lipopeptides and mediates innate immune responses.

Schröder NW, Heine H, Alexander C, Manukyan M, Eckert J, Hamann L, Göbel UB, Schumann RR.

J Immunol. 2004 Aug 15;173(4):2683-91.

3.

CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the receptor complex of Toll-like receptors 2 and 1 without binding to the complex.

Nakata T, Yasuda M, Fujita M, Kataoka H, Kiura K, Sano H, Shibata K.

Cell Microbiol. 2006 Dec;8(12):1899-909. Epub 2006 Jul 11.

PMID:
16848791
4.

Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins.

Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S.

J Immunol. 2002 Jul 1;169(1):10-4.

5.

CD14 protein acts as an adaptor molecule for the immune recognition of Salmonella curli fibers.

Rapsinski GJ, Newman TN, Oppong GO, van Putten JP, Tükel Ç.

J Biol Chem. 2013 May 17;288(20):14178-88. doi: 10.1074/jbc.M112.447060. Epub 2013 Apr 2.

6.
7.

Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides activate monocytic cells via a CD14-dependent pathway distinct from that used by lipopolysaccharide.

Sellati TJ, Bouis DA, Kitchens RL, Darveau RP, Pugin J, Ulevitch RJ, Gangloff SC, Goyert SM, Norgard MV, Radolf JD.

J Immunol. 1998 Jun 1;160(11):5455-64.

8.

TLR2 recognizes a bacterial lipopeptide through direct binding.

Vasselon T, Detmers PA, Charron D, Haziot A.

J Immunol. 2004 Dec 15;173(12):7401-5.

9.

Human TLRs 10 and 1 share common mechanisms of innate immune sensing but not signaling.

Guan Y, Ranoa DR, Jiang S, Mutha SK, Li X, Baudry J, Tapping RI.

J Immunol. 2010 May 1;184(9):5094-103. doi: 10.4049/jimmunol.0901888. Epub 2010 Mar 26.

10.
11.

Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1.

Manukyan M, Triantafilou K, Triantafilou M, Mackie A, Nilsen N, Espevik T, Wiesmüller KH, Ulmer AJ, Heine H.

Eur J Immunol. 2005 Mar;35(3):911-21.

12.

Lipopolysaccharide-binding protein inhibits toll-like receptor 2 activation by lipoteichoic acid in human odontoblast-like cells.

Carrouel F, Staquet MJ, Keller JF, Baudouin C, Msika P, Bleicher F, Alliot-Licht B, Farges JC.

J Endod. 2013 Aug;39(8):1008-14. doi: 10.1016/j.joen.2013.04.020. Epub 2013 May 16.

PMID:
23880268
13.

Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products.

Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW, Carroll JD, Espevik T, Ingalls RR, Radolf JD, Golenbock DT.

J Biol Chem. 1999 Nov 19;274(47):33419-25.

14.

Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide.

Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO.

Cell. 2007 Sep 21;130(6):1071-82.

15.

The Lyme disease vaccine takes its toll.

Thomas V, Fikrig E.

Vector Borne Zoonotic Dis. 2002 Winter;2(4):217-22.

PMID:
12804162
17.

Identification of Francisella tularensis lipoproteins that stimulate the toll-like receptor (TLR) 2/TLR1 heterodimer.

Thakran S, Li H, Lavine CL, Miller MA, Bina JE, Bina XR, Re F.

J Biol Chem. 2008 Feb 15;283(7):3751-60. Epub 2007 Dec 13.

18.

TLR1- and TLR6-independent recognition of bacterial lipopeptides.

Buwitt-Beckmann U, Heine H, Wiesmüller KH, Jung G, Brock R, Akira S, Ulmer AJ.

J Biol Chem. 2006 Apr 7;281(14):9049-57. Epub 2006 Feb 2.

19.

Circulating pathogen-associated molecular pattern - binding proteins and High Mobility Group Box protein 1 in nascent metabolic syndrome: implications for cellular Toll-like receptor activity.

Jialal I, Rajamani U, Adams-Huet B, Kaur H.

Atherosclerosis. 2014 Sep;236(1):182-7. doi: 10.1016/j.atherosclerosis.2014.06.022. Epub 2014 Jul 17.

PMID:
25063948
20.

Supplemental Content

Support Center