Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 56

1.

Controlled electrochemical charge injection to maximize the energy density of supercapacitors.

Weng Z, Li F, Wang DW, Wen L, Cheng HM.

Angew Chem Int Ed Engl. 2013 Mar 25;52(13):3722-5. doi: 10.1002/anie.201209259. Epub 2013 Feb 19. No abstract available.

PMID:
23423658
2.

On the configuration of supercapacitors for maximizing electrochemical performance.

Zhang J, Zhao XS.

ChemSusChem. 2012 May;5(5):818-41. doi: 10.1002/cssc.201100571. Epub 2012 Apr 30. Review.

PMID:
22550045
3.

Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

Yao K, Chen S, Rahimabady M, Mirshekarloo MS, Yu S, Tay FE, Sritharan T, Lu L.

IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Sep;58(9):1968-74. doi: 10.1109/TUFFC.2011.2039.

PMID:
21937333
4.

Materials for electrochemical capacitors.

Simon P, Gogotsi Y.

Nat Mater. 2008 Nov;7(11):845-54. doi: 10.1038/nmat2297.

PMID:
18956000
5.

Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

Kim YJ, Yang CM, Park KC, Kaneko K, Kim YA, Noguchi M, Fujino T, Oyama S, Endo M.

ChemSusChem. 2012 Mar 12;5(3):535-41. doi: 10.1002/cssc.201100511. Epub 2012 Feb 29.

PMID:
22378623
6.

Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors.

Zhang W, Liu F, Li Q, Shou Q, Cheng J, Zhang L, Nelson BJ, Zhang X.

Phys Chem Chem Phys. 2012 Dec 21;14(47):16331-7. doi: 10.1039/c2cp43673f. Epub 2012 Nov 6.

PMID:
23132379
7.

Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors.

Liu R, Duay J, Lane T, Bok Lee S.

Phys Chem Chem Phys. 2010 May 7;12(17):4309-16. doi: 10.1039/b918589p. Epub 2010 Jan 18.

PMID:
20407700
8.

β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors.

Qu B, Chen Y, Zhang M, Hu L, Lei D, Lu B, Li Q, Wang Y, Chen L, Wang T.

Nanoscale. 2012 Dec 21;4(24):7810-6. doi: 10.1039/c2nr31902k. Epub 2012 Nov 12.

PMID:
23147355
9.

Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress.

Li X, Rong J, Wei B.

ACS Nano. 2010 Oct 26;4(10):6039-49. doi: 10.1021/nn101595y.

PMID:
20828214
10.

MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage.

Sherrill SA, Duay J, Gui Z, Banerjee P, Rubloff GW, Lee SB.

Phys Chem Chem Phys. 2011 Sep 7;13(33):15221-6. doi: 10.1039/c1cp21815h. Epub 2011 Jul 20.

PMID:
21776451
11.

Carbon-based supercapacitors produced by activation of graphene.

Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS.

Science. 2011 Jun 24;332(6037):1537-41. doi: 10.1126/science.1200770. Epub 2011 May 12.

12.

All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels.

Kang YJ, Chun SJ, Lee SS, Kim BY, Kim JH, Chung H, Lee SY, Kim W.

ACS Nano. 2012 Jul 24;6(7):6400-6. doi: 10.1021/nn301971r. Epub 2012 Jun 25.

PMID:
22717174
13.

Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors.

Simon P, Gogotsi Y.

Philos Trans A Math Phys Eng Sci. 2010 Jul 28;368(1923):3457-67. doi: 10.1098/rsta.2010.0109. Review.

14.

The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.

Zhao X, Sánchez BM, Dobson PJ, Grant PS.

Nanoscale. 2011 Mar;3(3):839-55. doi: 10.1039/c0nr00594k. Epub 2011 Jan 20. Review.

PMID:
21253650
15.

High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.

Kim B, Chung H, Kim W.

Nanotechnology. 2012 Apr 20;23(15):155401. doi: 10.1088/0957-4484/23/15/155401. Epub 2012 Mar 22.

PMID:
22437007
16.

Laser scribing of high-performance and flexible graphene-based electrochemical capacitors.

El-Kady MF, Strong V, Dubin S, Kaner RB.

Science. 2012 Mar 16;335(6074):1326-30. doi: 10.1126/science.1216744.

17.

Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors.

Ghodbane O, Pascal JL, Favier F.

ACS Appl Mater Interfaces. 2009 May;1(5):1130-9. doi: 10.1021/am900094e.

PMID:
20355901
18.

Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.

Cheng Y, Zhang H, Lu S, Varanasi CV, Liu J.

Nanoscale. 2013 Feb 7;5(3):1067-73. doi: 10.1039/c2nr33136e. Epub 2012 Dec 20.

PMID:
23254316
19.

Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC.

Phys Chem Chem Phys. 2011 Oct 21;13(39):17615-24. doi: 10.1039/c1cp21910c. Epub 2011 Sep 1.

PMID:
21887427
20.

Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.

Hou J, Shao Y, Ellis MW, Moore RB, Yi B.

Phys Chem Chem Phys. 2011 Sep 14;13(34):15384-402. doi: 10.1039/c1cp21915d. Epub 2011 Jul 29.

PMID:
21799983

Supplemental Content

Support Center