Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 146

1.

Preferential c-axis orientation of ultrathin SnS2 nanoplates on graphene as high-performance anode for Li-ion batteries.

Liu S, Lu X, Xie J, Cao G, Zhu T, Zhao X.

ACS Appl Mater Interfaces. 2013 Mar 13;5(5):1588-95. doi: 10.1021/am302124f. Epub 2013 Feb 28.

PMID:
23421369
2.

SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries.

Xie X, Su D, Chen S, Zhang J, Dou S, Wang G.

Chem Asian J. 2014 Jun;9(6):1611-7. doi: 10.1002/asia.201400018. Epub 2014 Apr 11.

PMID:
24729583
3.

Exfoliated-SnSâ‚‚ restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries.

Liu Y, Kang H, Jiao L, Chen C, Cao K, Wang Y, Yuan H.

Nanoscale. 2015 Jan 28;7(4):1325-32. doi: 10.1039/c4nr05106h.

PMID:
25367597
4.

Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications.

Chen P, Su Y, Liu H, Wang Y.

ACS Appl Mater Interfaces. 2013 Nov 27;5(22):12073-82. doi: 10.1021/am403905x. Epub 2013 Nov 7.

PMID:
24156609
5.

Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability.

Peng S, Han X, Li L, Zhu Z, Cheng F, Srinivansan M, Adams S, Ramakrishna S.

Small. 2016 Mar 9;12(10):1359-68. doi: 10.1002/smll.201502788. Epub 2016 Jan 13.

PMID:
26763142
6.

Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS.

Zhou T, Pang WK, Zhang C, Yang J, Chen Z, Liu HK, Guo Z.

ACS Nano. 2014 Aug 26;8(8):8323-33. doi: 10.1021/nn503582c. Epub 2014 Jul 14.

PMID:
25010575
7.

Tin Disulfide Nanoplates on Graphene Nanoribbons for Full Lithium Ion Batteries.

Gao C, Li L, Raji AR, Kovalchuk A, Peng Z, Fei H, He Y, Kim ND, Zhong Q, Xie E, Tour JM.

ACS Appl Mater Interfaces. 2015 Dec 9;7(48):26549-56. doi: 10.1021/acsami.5b07768. Epub 2015 Nov 24.

PMID:
26562719
8.

Rationally Incorporated MoS2/SnS2 Nanoparticles on Graphene Sheets for Lithium-Ion and Sodium-Ion Batteries.

Jiang Y, Guo Y, Lu W, Feng Z, Xi B, Kai S, Zhang J, Feng J, Xiong S.

ACS Appl Mater Interfaces. 2017 Aug 23;9(33):27697-27706. doi: 10.1021/acsami.7b06572. Epub 2017 Aug 9.

PMID:
28762720
9.

Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.

Xu W, Xie Z, Cui X, Zhao K, Zhang L, Dietrich G, Dooley KM, Wang Y.

ACS Appl Mater Interfaces. 2015 Oct 14;7(40):22533-41. doi: 10.1021/acsami.5b06765. Epub 2015 Sep 30.

PMID:
26389757
10.

Two-Dimensional Tin Disulfide Nanosheets for Enhanced Sodium Storage.

Sun W, Rui X, Yang D, Sun Z, Li B, Zhang W, Zong Y, Madhavi S, Dou S, Yan Q.

ACS Nano. 2015 Nov 24;9(11):11371-81. doi: 10.1021/acsnano.5b05229. Epub 2015 Oct 23.

PMID:
26487194
11.
12.

Solid-State Fabrication of SnS2/C Nanospheres for High-Performance Sodium Ion Battery Anode.

Wang J, Luo C, Mao J, Zhu Y, Fan X, Gao T, Mignerey AC, Wang C.

ACS Appl Mater Interfaces. 2015 Jun 3;7(21):11476-81. doi: 10.1021/acsami.5b02413. Epub 2015 May 21.

PMID:
25970036
13.

An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS2 Cathode Active Material for Aluminum-Ion Batteries.

Hu Y, Luo B, Ye D, Zhu X, Lyu M, Wang L.

Adv Mater. 2017 Mar 29. doi: 10.1002/adma.201606132. [Epub ahead of print]

PMID:
28370537
14.

Evolution of Reduced Graphene Oxide-SnS2 Hybrid Nanoparticle Electrodes in Li-Ion Batteries.

Modarres MH, Lim JH, George C, De Volder M.

J Phys Chem C Nanomater Interfaces. 2017 Jun 22;121(24):13018-13024. doi: 10.1021/acs.jpcc.7b02878. Epub 2017 May 30.

15.

Flexible Paper-like Free-Standing Electrodes by Anchoring Ultrafine SnS2 Nanocrystals on Graphene Nanoribbons for High-Performance Sodium Ion Batteries.

Liu Y, Yang Y, Wang X, Dong Y, Tang Y, Yu Z, Zhao Z, Qiu J.

ACS Appl Mater Interfaces. 2017 May 10;9(18):15484-15491. doi: 10.1021/acsami.7b02394. Epub 2017 Apr 27.

PMID:
28429929
16.

Development of SnS2/RGO nanosheet composite for cost-effective aqueous hybrid supercapacitors.

Chauhan H, Singh MK, Kumar P, Hashmi SA, Deka S.

Nanotechnology. 2017 Jan 13;28(2):025401. Epub 2016 Dec 7.

PMID:
27924781
17.

Vanadium Nitride Nanowire Supported SnS2 Nanosheets with High Reversible Capacity as Anode Material for Lithium Ion Batteries.

Balogun MS, Qiu W, Jian J, Huang Y, Luo Y, Yang H, Liang C, Lu X, Tong Y.

ACS Appl Mater Interfaces. 2015 Oct 21;7(41):23205-15. doi: 10.1021/acsami.5b07044. Epub 2015 Oct 12.

PMID:
26439604
18.

Unlocking the potential of SnS2: Transition metal catalyzed utilization of reversible conversion and alloying reactions.

Huang ZX, Wang Y, Liu B, Kong D, Zhang J, Chen T, Yang HY.

Sci Rep. 2017 Jan 19;7:41015. doi: 10.1038/srep41015.

19.

TiO2-B nanosheets/anatase nanocrystals co-anchored on nanoporous graphene: in situ reduction-hydrolysis synthesis and their superior rate performance as an anode material.

Chen C, Hu X, Jiang Y, Yang Z, Hu P, Huang Y.

Chemistry. 2014 Jan 27;20(5):1383-8. doi: 10.1002/chem.201303734. Epub 2013 Dec 27.

PMID:
24375595
20.

Three-Dimensional Nanoporous Graphene-Carbon Nanotube Hybrid Frameworks for Confinement of SnS2 Nanosheets: Flexible and Binder-Free Papers with Highly Reversible Lithium Storage.

Zhang L, Huang Y, Zhang Y, Fan W, Liu T.

ACS Appl Mater Interfaces. 2015 Dec 23;7(50):27823-30. doi: 10.1021/acsami.5b09115. Epub 2015 Dec 14.

PMID:
26619894

Supplemental Content

Support Center