Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Highly focalised thermotherapy using a ferrimagnetic cement in the treatment of a melanoma mouse model by low temperature hyperthermia.

Portela A, Vasconcelos M, Fernandes MH, Garcia M, Silva A, Gabriel J, Gartner F, Amorim I, Cavalheiro J.

Int J Hyperthermia. 2013;29(2):121-32. doi: 10.3109/02656736.2013.767478.

PMID:
23418916
2.

An in vitro and in vivo investigation of the biological behavior of a ferrimagnetic cement for highly focalized thermotherapy.

Portela A, Vasconcelos M, Branco R, Gartner F, Faria M, Cavalheiro J.

J Mater Sci Mater Med. 2010 Aug;21(8):2413-23. doi: 10.1007/s10856-010-4093-6. Epub 2010 Jun 15.

PMID:
20549312
3.

Self-regulating hyperthermia induced using thermosensitive ferromagnetic material with a low Curie temperature.

Saito H, Mitobe K, Ito A, Sugawara Y, Maruyama K, Minamiya Y, Motoyama S, Yoshimura N, Ogawa J.

Cancer Sci. 2008 Apr;99(4):805-9. doi: 10.1111/j.1349-7006.2008.00726.x. Epub 2008 Feb 21.

4.

Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.

Rodrigues HF, Mello FM, Branquinho LC, Zufelato N, Silveira-Lacerda EP, Bakuzis AF.

Int J Hyperthermia. 2013 Dec;29(8):752-67. doi: 10.3109/02656736.2013.839056. Epub 2013 Oct 18.

PMID:
24138472
5.

Inhibition of heat shock protein 90 sensitizes melanoma cells to thermosensitive ferromagnetic particle-mediated hyperthermia with low Curie temperature.

Ito A, Saito H, Mitobe K, Minamiya Y, Takahashi N, Maruyama K, Motoyama S, Katayose Y, Ogawa J.

Cancer Sci. 2009 Mar;100(3):558-64. doi: 10.1111/j.1349-7006.2008.01072.x. Epub 2009 Jan 14.

6.

Transscleral laser thermotherapy of hamster Greene melanoma: inducing tumour necrosis without scleral damage.

Rem AI, Oosterhuis JA, Korver JG, van den Berg TJ.

Melanoma Res. 2001 Oct;11(5):503-9.

PMID:
11595888
7.

Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model.

Petryk AA, Giustini AJ, Gottesman RE, Trembly BS, Hoopes PJ.

Int J Hyperthermia. 2013 Dec;29(8):819-27. doi: 10.3109/02656736.2013.845801.

8.

Experimental study of a novel thermotherapy for hepatocellular carcinoma using a magnesium ferrite complex powder that produces heat under a magnetic field.

Muraoka A, Takeda S, Matsui M, Shimizu T, Tohnai I, Akiyama S, Nakao A.

Hepatogastroenterology. 2004 Nov-Dec;51(60):1662-6.

PMID:
15532799
9.

Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment.

Xia QS, Liu X, Xu B, Zhao TD, Li HY, Chen ZH, Xiang Q, Geng CY, Pan L, Hu RL, Qi YJ, Sun GF, Tang JT.

Oncol Rep. 2011 Apr;25(4):953-62. doi: 10.3892/or.2011.1143. Epub 2011 Jan 13.

PMID:
21234522
10.

Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes.

Suzuki M, Shinkai M, Honda H, Kobayashi T.

Melanoma Res. 2003 Apr;13(2):129-35.

PMID:
12690295
11.

Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo.

Jordan A, Scholz R, Wust P, Fähling H, Krause J, Wlodarczyk W, Sander B, Vogl T, Felix R.

Int J Hyperthermia. 1997 Nov-Dec;13(6):587-605.

PMID:
9421741
12.

A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages.

Fantechi E, Innocenti C, Zanardelli M, Fittipaldi M, Falvo E, Carbo M, Shullani V, Di Cesare Mannelli L, Ghelardini C, Ferretti AM, Ponti A, Sangregorio C, Ceci P.

ACS Nano. 2014 May 27;8(5):4705-19. doi: 10.1021/nn500454n. Epub 2014 Apr 8.

PMID:
24689973
13.

Thermotherapy for Harding-Passey melanoma: light and electron microscopic study.

Vicente V, Gómez M, Gómez S, Calderon F, Canteras M, Cremades A.

Histol Histopathol. 1987 Oct;2(4):369-81.

PMID:
2980740
14.
15.
16.

Evaluation of photodynamic therapy-induced heating of hamster melanoma and its effect on local tumour eradication.

Leunig M, Leunig A, Lankes P, Goetz AE.

Int J Hyperthermia. 1994 Mar-Apr;10(2):297-306. Erratum in: Int J Hyperthermia 1994 Nov-Dec;10(6):867.

PMID:
8064187
17.

Usefulness of combined treatment with continuous administration of tirapazamine and mild temperature hyperthermia in γ-ray irradiation in terms of local tumour response and lung metastatic potential.

Masunaga S, Liu Y, Sakurai Y, Tanaka H, Suzuki M, Kondo N, Maruhashi A, Ono K.

Int J Hyperthermia. 2012;28(7):636-44. doi: 10.3109/02656736.2012.714517. Epub 2012 Sep 4.

PMID:
22946564
18.

Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model.

Johannsen M, Thiesen B, Jordan A, Taymoorian K, Gneveckow U, Waldöfner N, Scholz R, Koch M, Lein M, Jung K, Loening SA.

Prostate. 2005 Aug 1;64(3):283-92.

PMID:
15726645
19.
20.

Hyperthermia inhibits the proliferation and invasive ability of mouse malignant melanoma through TGF-β(1).

Jin H, Xie X, Hu B, Gao F, Zhou J, Zhang Y, Du L, Wang X, Zhao L, Zhang X, Shen L, Liao Y, Tang J.

Oncol Rep. 2013 Feb;29(2):725-34. doi: 10.3892/or.2012.2128. Epub 2012 Nov 7.

PMID:
23135570

Supplemental Content

Support Center