Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 388

1.

Higher propensity of Wharton's jelly derived mesenchymal stromal cells towards neuronal lineage in comparison to those derived from adipose and bone marrow.

Balasubramanian S, Thej C, Venugopal P, Priya N, Zakaria Z, Sundarraj S, Majumdar AS.

Cell Biol Int. 2013 May;37(5):507-15. doi: 10.1002/cbin.10056. Epub 2013 Feb 18.

PMID:
23418097
2.

Induction of human umbilical Wharton's jelly-derived mesenchymal stem cells toward motor neuron-like cells.

Bagher Z, Ebrahimi-Barough S, Azami M, Mirzadeh H, Soleimani M, Ai J, Nourani MR, Joghataei MT.

In Vitro Cell Dev Biol Anim. 2015 Oct;51(9):987-94. doi: 10.1007/s11626-015-9921-z. Epub 2015 Jul 7.

PMID:
26148883
3.

Neuronal plasticity of human Wharton's jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells.

Datta I, Mishra S, Mohanty L, Pulikkot S, Joshi PG.

Cytotherapy. 2011 Sep;13(8):918-32. doi: 10.3109/14653249.2011.579957. Epub 2011 Jun 22.

PMID:
21696238
4.

Stem cells from umbilical cord Wharton's jelly from preterm birth have neuroglial differentiation potential.

Messerli M, Wagner A, Sager R, Mueller M, Baumann M, Surbek DV, Schoeberlein A.

Reprod Sci. 2013 Dec;20(12):1455-64. doi: 10.1177/1933719113488443. Epub 2013 May 13.

5.

Altered expression of microRNAs in the neuronal differentiation of human Wharton's Jelly mesenchymal stem cells.

Zhuang H, Zhang R, Zhang S, Shu Q, Zhang D, Xu G.

Neurosci Lett. 2015 Jul 23;600:69-74. doi: 10.1016/j.neulet.2015.05.061. Epub 2015 Jun 3.

PMID:
26049006
6.

Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system.

Cardoso TC, Ferrari HF, Garcia AF, Novais JB, Silva-Frade C, Ferrarezi MC, Andrade AL, Gameiro R.

BMC Biotechnol. 2012 May 4;12:18. doi: 10.1186/1472-6750-12-18.

7.

Priming Wharton's jelly-derived mesenchymal stromal/stem cells with ROCK inhibitor improves recovery in an intracerebral hemorrhage model.

Lee HS, Kim KS, Lim HS, Choi M, Kim HK, Ahn HY, Shin JC, Joe YA.

J Cell Biochem. 2015 Feb;116(2):310-9. doi: 10.1002/jcb.24969.

PMID:
25185536
8.

Unique molecular signatures influencing the biological function and fate of post-natal stem cells isolated from different sources.

Abu Kasim NH, Govindasamy V, Gnanasegaran N, Musa S, Pradeep PJ, Srijaya TC, Aziz ZA.

J Tissue Eng Regen Med. 2015 Dec;9(12):E252-66. doi: 10.1002/term.1663. Epub 2012 Dec 10.

PMID:
23229816
9.

Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.

Batsali AK, Pontikoglou C, Koutroulakis D, Pavlaki KI, Damianaki A, Mavroudi I, Alpantaki K, Kouvidi E, Kontakis G, Papadaki HA.

Stem Cell Res Ther. 2017 Apr 26;8(1):102. doi: 10.1186/s13287-017-0555-9.

10.

A comparison of neurosphere differentiation potential of canine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells.

Chung CS, Fujita N, Kawahara N, Yui S, Nam E, Nishimura R.

J Vet Med Sci. 2013 Jul 31;75(7):879-86. Epub 2013 Feb 19.

11.

Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation.

Li X, Bai J, Ji X, Li R, Xuan Y, Wang Y.

Int J Mol Med. 2014 Sep;34(3):695-704. doi: 10.3892/ijmm.2014.1821. Epub 2014 Jun 25.

12.

Common expression of stemness molecular markers and early cardiac transcription factors in human Wharton's jelly-derived mesenchymal stem cells and embryonic stem cells.

Gao LR, Zhang NK, Ding QA, Chen HY, Hu X, Jiang S, Li TC, Chen Y, Wang ZG, Ye Y, Zhu ZM.

Cell Transplant. 2013;22(10):1883-900. doi: 10.3727/096368912X662444. Epub 2013 Feb 4.

PMID:
23394400
13.

Stage-specific embryonic antigen 4 in Wharton's jelly-derived mesenchymal stem cells is not a marker for proliferation and multipotency.

He H, Nagamura-Inoue T, Tsunoda H, Yuzawa M, Yamamoto Y, Yorozu P, Agata H, Tojo A.

Tissue Eng Part A. 2014 Apr;20(7-8):1314-24. doi: 10.1089/ten.TEA.2013.0333. Epub 2014 Mar 14.

PMID:
24279891
14.

Positive selection of Wharton's jelly-derived CD105(+) cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells.

Amiri F, Halabian R, Dehgan Harati M, Bahadori M, Mehdipour A, Mohammadi Roushandeh A, Habibi Roudkenar M.

Hematology. 2015 May;20(4):208-16. doi: 10.1179/1607845414Y.0000000185. Epub 2014 Aug 12.

PMID:
25116042
15.

Mesenchymal stromal cells from umbilical cord Wharton's jelly trigger oligodendroglial differentiation in neural progenitor cells through cell-to-cell contact.

Oppliger B, Joerger-Messerli MS, Simillion C, Mueller M, Surbek DV, Schoeberlein A.

Cytotherapy. 2017 Jul;19(7):829-838. doi: 10.1016/j.jcyt.2017.03.075. Epub 2017 Apr 27.

PMID:
28457739
16.

Comparative Analyses of Immunosuppressive Characteristics of Bone-Marrow, Wharton's Jelly, and Adipose Tissue-Derived Human Mesenchymal Stem Cells.

Karaöz E, Çetinalp Demircan P, Erman G, Güngörürler E, Eker Sarıboyacı A.

Turk J Haematol. 2017 Aug 2;34(3):213-225. doi: 10.4274/tjh.2016.0171. Epub 2016 Sep 9.

17.

Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton's jelly and their differentiation potential to neural-like cells.

Tantrawatpan C, Manochantr S, Kheolamai P, U-Pratya Y, Supokawej A, Issaragrisil S.

J Med Assoc Thai. 2013 Sep;96(9):1208-17.

PMID:
24163998
18.

Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells.

Kim MJ, Shin KS, Jeon JH, Lee DR, Shim SH, Kim JK, Cha DH, Yoon TK, Kim GJ.

Cell Tissue Res. 2011 Oct;346(1):53-64. doi: 10.1007/s00441-011-1249-8. Epub 2011 Oct 11.

PMID:
21987220
19.

Fast transdifferentiation of human Wharton's jelly mesenchymal stem cells into neurospheres and nerve-like cells.

Bonilla-Porras AR, Velez-Pardo C, Jimenez-Del-Rio M.

J Neurosci Methods. 2017 Apr 15;282:52-60. doi: 10.1016/j.jneumeth.2017.03.005. Epub 2017 Mar 8.

PMID:
28286110
20.

Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells.

Ma L, Feng XY, Cui BL, Law F, Jiang XW, Yang LY, Xie QD, Huang TH.

Chin Med J (Engl). 2005 Dec 5;118(23):1987-93.

PMID:
16336835

Supplemental Content

Support Center