Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus.

Hirano S, Matsumoto N, Morita M, Sasaki K, Ohmura N.

Lett Appl Microbiol. 2013 May;56(5):315-21. doi: 10.1111/lam.12059. Epub 2013 Mar 15.

2.

Bioelectrochemical regulation accelerates facultatively syntrophic proteolysis.

Sasaki D, Sasaki K, Morita M, Hirano S, Matsumoto N, Ohmura N.

J Biosci Bioeng. 2012 Jul;114(1):59-63. doi: 10.1016/j.jbiosc.2012.02.013. Epub 2012 Mar 14.

PMID:
22421636
3.

Increased growth of a hydrogenotrophic methanogen in co-culture with a cellulolytic bacterium under cathodic electrochemical regulation.

Sasaki D, Morita M, Sasaki K, Watanabe A, Ohmura N.

Biosci Biotechnol Biochem. 2013;77(5):1096-9. Epub 2013 May 7.

4.

Methanogenesis is Ca2+ dependent in Methanothermobacter thermautotrophicus strain DeltaH.

Vancek M, Vidová M, Majerník AI, Smigán P.

FEMS Microbiol Lett. 2006 May;258(2):269-73.

5.

Methane production by Methanothermobacter thermautotrophicus to recover energy from carbon dioxide sequestered in geological reservoirs.

Kawaguchi H, Sakuma T, Nakata Y, Kobayashi H, Endo K, Sato K.

J Biosci Bioeng. 2010 Jul;110(1):106-8. doi: 10.1016/j.jbiosc.2010.01.008. Epub 2010 Jan 27.

PMID:
20541126
6.

More than 200 genes required for methane formation from H₂ and CO₂ and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus.

Kaster AK, Goenrich M, Seedorf H, Liesegang H, Wollherr A, Gottschalk G, Thauer RK.

Archaea. 2011;2011:973848. doi: 10.1155/2011/973848. Epub 2011 Apr 27.

8.

Comparative transcriptome analysis of responses of Methanothermobacter thermautotrophicus to different environmental stimuli.

Kato S, Kosaka T, Watanabe K.

Environ Microbiol. 2008 Apr;10(4):893-905. Epub 2007 Nov 25.

PMID:
18036179
9.

Enrichment of hydrogenotrophic methanogens in coupling with methane production using an electrochemical bioreactor.

Jeon BY, Kim SY, Park YK, Park DH.

J Microbiol Biotechnol. 2009 Dec;19(12):1665-71.

10.
11.

Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.

Wang H, Fotidis IA, Angelidaki I.

FEMS Microbiol Ecol. 2015 Nov;91(11). pii: fiv130. doi: 10.1093/femsec/fiv130. Epub 2015 Oct 20.

PMID:
26490748
12.

Physiological and genetic basis for self-aggregation of a thermophilic hydrogenotrophic methanogen, Methanothermobacter strain CaT2.

Kosaka T, Toh H, Fujiyama A, Sakaki Y, Watanabe K, Meng XY, Hanada S, Toyoda A.

Environ Microbiol Rep. 2014 Jun;6(3):268-77. doi: 10.1111/1758-2229.12128. Epub 2013 Dec 12.

PMID:
24983531
13.

A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2 -to-CH4 conversion with H2.

Martin MR, Fornero JJ, Stark R, Mets L, Angenent LT.

Archaea. 2013;2013:157529. doi: 10.1155/2013/157529. Epub 2013 Oct 1.

14.

Comparative proteomic analysis of Methanothermobacter themautotrophicus ΔH in pure culture and in co-culture with a butyrate-oxidizing bacterium.

Enoki M, Shinzato N, Sato H, Nakamura K, Kamagata Y.

PLoS One. 2011;6(8):e24309. doi: 10.1371/journal.pone.0024309. Epub 2011 Aug 31.

15.

Harmaline-resistant mutant of Methanothermobacter thermautotrophicus with a lesion in Na(+)/H(+) antiport.

Vidová M, Bobáľová J, Smigáň P.

Gen Physiol Biophys. 2011;30 Spec No:S54-60. doi: 10.4149/gpb_2011_SI1_54.

PMID:
21869452
16.

Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens.

Zhang F, Zhang Y, Ding J, Dai K, van Loosdrecht MC, Zeng RJ.

Sci Rep. 2014 Jun 12;4:5268. doi: 10.1038/srep05268.

17.

Acceleration of cellulose degradation and shift of product via methanogenic co-culture of a cellulolytic bacterium with a hydrogenotrophic methanogen.

Sasaki D, Morita M, Sasaki K, Watanabe A, Ohmura N.

J Biosci Bioeng. 2012 Oct;114(4):435-9. doi: 10.1016/j.jbiosc.2012.05.002. Epub 2012 May 30.

PMID:
22652087
18.

Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus.

Sasaki K, Morita M, Sasaki D, Nagaoka J, Matsumoto N, Ohmura N, Shinozaki H.

J Biosci Bioeng. 2011 Nov;112(5):469-72. doi: 10.1016/j.jbiosc.2011.07.003. Epub 2011 Jul 29.

PMID:
21802987
19.

Hydrogen concentrations in methane-forming cells probed by the ratios of reduced and oxidized coenzyme F420.

de Poorter LM, Geerts WJ, Keltjens JT.

Microbiology. 2005 May;151(Pt 5):1697-705.

PMID:
15870477
20.

Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan).

Mayumi D, Mochimaru H, Yoshioka H, Sakata S, Maeda H, Miyagawa Y, Ikarashi M, Takeuchi M, Kamagata Y.

Environ Microbiol. 2011 Aug;13(8):1995-2006. doi: 10.1111/j.1462-2920.2010.02338.x. Epub 2010 Sep 23.

PMID:
20860731

Supplemental Content

Support Center