Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 73

1.

Molecular archeology: unearthing androgen-induced structural rearrangements in prostate cancer genomes.

Demichelis F, Garraway LA, Rubin MA.

Cancer Cell. 2013 Feb 11;23(2):133-5. doi: 10.1016/j.ccr.2013.01.019.

3.

Prevalence of chromosomal rearrangements involving non-ETS genes in prostate cancer.

Kluth M, Galal R, Krohn A, Weischenfeldt J, Tsourlakis C, Paustian L, Ahrary R, Ahmed M, Scherzai S, Meyer A, Sirma H, Korbel J, Sauter G, Schlomm T, Simon R, Minner S.

Int J Oncol. 2015 Apr;46(4):1637-42. doi: 10.3892/ijo.2015.2855.

PMID:
25625310
4.
5.

Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer.

Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, Menon A, Jing X, Cao Q, Han B, Yu J, Wang L, Montie JE, Rubin MA, Pienta KJ, Roulston D, Shah RB, Varambally S, Mehra R, Chinnaiyan AM.

Nature. 2007 Aug 2;448(7153):595-9.

6.

SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer.

Rickman DS, Pflueger D, Moss B, VanDoren VE, Chen CX, de la Taille A, Kuefer R, Tewari AK, Setlur SR, Demichelis F, Rubin MA.

Cancer Res. 2009 Apr 1;69(7):2734-8. doi: 10.1158/0008-5472.CAN-08-4926.

7.

Differential expression of ETS family members in prostate cancer tissues and androgen-sensitive and insensitive prostate cancer cell lines.

Shaikhibrahim Z, Lindstrot A, Langer B, Buettner R, Wernert N.

Int J Mol Med. 2011 Jul;28(1):89-93. doi: 10.3892/ijmm.2011.672.

PMID:
21491078
8.

Recurrent SKIL-activating rearrangements in ETS-negative prostate cancer.

Annala M, Kivinummi K, Tuominen J, Karakurt S, Granberg K, Latonen L, Ylipää A, Sjöblom L, Ruusuvuori P, Saramäki O, Kaukoniemi KM, Yli-Harja O, Vessella RL, Tammela TL, Zhang W, Visakorpi T, Nykter M.

Oncotarget. 2015 Mar 20;6(8):6235-50.

9.

Remarkable similarities of chromosomal rearrangements between primary human breast cancers and matched distant metastases as revealed by whole-genome sequencing.

Tang MH, Dahlgren M, Brueffer C, Tjitrowirjo T, Winter C, Chen Y, Olsson E, Wang K, Törngren T, Sjöström M, Grabau D, Bendahl PO, Rydén L, Niméus E, Saal LH, Borg Å, Gruvberger-Saal SK.

Oncotarget. 2015 Nov 10;6(35):37169-84. doi: 10.18632/oncotarget.5951.

10.

ETS gene fusions and prostate cancer.

Huang W, Waknitz M.

Am J Transl Res. 2009 May 25;1(4):341-51.

11.

Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer.

Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N, Nickerson E, Chae SS, Boysen G, Auclair D, Onofrio RC, Park K, Kitabayashi N, MacDonald TY, Sheikh K, Vuong T, Guiducci C, Cibulskis K, Sivachenko A, Carter SL, Saksena G, Voet D, Hussain WM, Ramos AH, Winckler W, Redman MC, Ardlie K, Tewari AK, Mosquera JM, Rupp N, Wild PJ, Moch H, Morrissey C, Nelson PS, Kantoff PW, Gabriel SB, Golub TR, Meyerson M, Lander ES, Getz G, Rubin MA, Garraway LA.

Nat Genet. 2012 May 20;44(6):685-9. doi: 10.1038/ng.2279.

12.

ETS fusion genes in prostate cancer.

Gasi Tandefelt D, Boormans J, Hermans K, Trapman J.

Endocr Relat Cancer. 2014 May 6;21(3):R143-52. doi: 10.1530/ERC-13-0390. Review.

13.

Detection of TMPRSS2-ETS fusions by a multiprobe fluorescence in situ hybridization assay for the early diagnosis of prostate cancer: a pilot study.

Sun QP, Li LY, Chen Z, Pang J, Yang WJ, Zhou XF, Qiu JG, Su ZL, He D, Gao X.

J Mol Diagn. 2010 Sep;12(5):718-24. doi: 10.2353/jmoldx.2010.100002.

14.

PDEF, a novel prostate epithelium-specific ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression.

Oettgen P, Finger E, Sun Z, Akbarali Y, Thamrongsak U, Boltax J, Grall F, Dube A, Weiss A, Brown L, Quinn G, Kas K, Endress G, Kunsch C, Libermann TA.

J Biol Chem. 2000 Jan 14;275(2):1216-25.

15.

Integrative genomic, transcriptomic, and RNAi analysis indicates a potential oncogenic role for FAM110B in castration-resistant prostate cancer.

Vainio P, Wolf M, Edgren H, He T, Kohonen P, Mpindi JP, Smit F, Verhaegh G, Schalken J, Perälä M, Iljin K, Kallioniemi O.

Prostate. 2012 May 15;72(7):789-802. doi: 10.1002/pros.21487.

PMID:
21919029
16.

The biology of hormone refractory prostate cancer. Why does it develop?

Isaacs JT.

Urol Clin North Am. 1999 May;26(2):263-73. Review.

PMID:
10361549
17.

TabBO: a model reflecting common molecular features of androgen-independent prostate cancer.

Navone NM, Rodriquez-Vargas MC, Benedict WF, Troncoso P, McDonnell TJ, Zhou JH, Luthra R, Logothetis CJ.

Clin Cancer Res. 2000 Mar;6(3):1190-7.

18.

The CAG trinucleotide repeat length in the androgen receptor does not predict the early onset of prostate cancer.

Mir K, Edwards J, Paterson PJ, Hehir M, Underwood MA, Bartlett JM.

BJU Int. 2002 Oct;90(6):573-8.

19.

Fusion in the ETS gene family and prostate cancer.

Narod SA, Seth A, Nam R.

Br J Cancer. 2008 Sep 16;99(6):847-51. doi: 10.1038/sj.bjc.6604558. Review.

20.

Evidence for the presence of disease-perturbed networks in prostate cancer cells by genomic and proteomic analyses: a systems approach to disease.

Lin B, White JT, Lu W, Xie T, Utleg AG, Yan X, Yi EC, Shannon P, Khrebtukova I, Lange PH, Goodlett DR, Zhou D, Vasicek TJ, Hood L.

Cancer Res. 2005 Apr 15;65(8):3081-91.

Items per page

Supplemental Content

Support Center