Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

The distribution of arsenic in shallow alluvial groundwater under agricultural land in central Portugal: insights from multivariate geostatistical modeling.

Andrade AI, Stigter TY.

Sci Total Environ. 2013 Apr 1;449:37-51. doi: 10.1016/j.scitotenv.2013.01.033. Epub 2013 Feb 12.

PMID:
23410893
2.

Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.

Xie X, Ellis A, Wang Y, Xie Z, Duan M, Su C.

Sci Total Environ. 2009 Jun 1;407(12):3823-35. doi: 10.1016/j.scitotenv.2009.01.041. Epub 2009 Apr 2.

PMID:
19344934
3.

Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments.

Kim SH, Kim K, Ko KS, Kim Y, Lee KS.

Chemosphere. 2012 May;87(8):851-6. doi: 10.1016/j.chemosphere.2012.01.025. Epub 2012 Feb 10.

PMID:
22325979
4.

Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas.

Sharif MU, Davis RK, Steele KF, Kim B, Hays PD, Kresse TM, Fazio JA.

J Contam Hydrol. 2008 Jul 29;99(1-4):49-67. doi: 10.1016/j.jconhyd.2008.03.001. Epub 2008 Mar 20.

PMID:
18486990
5.

Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping.

Ahmed ZU, Panaullah GM, DeGloria SD, Duxbury JM.

Sci Total Environ. 2011 Dec 15;412-413:324-35. doi: 10.1016/j.scitotenv.2011.10.008. Epub 2011 Nov 4.

PMID:
22055452
6.

Exposure assessment of pesticides in a shallow groundwater of the Tagus vulnerable zone (Portugal): a multivariate statistical approach (JCA).

Silva E, Mendes MP, Ribeiro L, Cerejeira MJ.

Environ Sci Pollut Res Int. 2011 Aug;19(7):2667-80. doi: 10.1007/s11356-012-0761-z. Epub 2012 Feb 4.

PMID:
22307895
7.

Using multivariate statistical methods to assess the groundwater quality in an arsenic-contaminated area of Southwestern Taiwan.

Lu KL, Liu CW, Jang CS.

Environ Monit Assess. 2012 Oct;184(10):6071-85. doi: 10.1007/s10661-011-2406-y. Epub 2011 Nov 3.

PMID:
22048921
8.

Evaluation of surface water quality using an ecotoxicological approach: a case study of the Alqueva Reservoir (Portugal).

Palma P, Alvarenga P, Palma V, Matos C, Fernandes RM, Soares A, Barbosa IR.

Environ Sci Pollut Res Int. 2010 Mar;17(3):703-16. doi: 10.1007/s11356-009-0143-3. Epub 2009 Apr 25.

PMID:
19396484
9.

20 years of long-term atrazine monitoring in a shallow aquifer in western Germany.

Vonberg D, Vanderborght J, Cremer N, Pütz T, Herbst M, Vereecken H.

Water Res. 2014 Mar 1;50:294-306. doi: 10.1016/j.watres.2013.10.032. Epub 2013 Oct 24.

PMID:
24188580
10.

Importance of surface geologic condition in regulating As concentration of groundwater in the alluvial plain.

Kim K, Moon JT, Kim SH, Ko KS.

Chemosphere. 2009 Oct;77(4):478-84. doi: 10.1016/j.chemosphere.2009.07.053. Epub 2009 Aug 21.

PMID:
19699509
11.

Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina).

Nicolli HB, Bundschuh J, García JW, Falcón CM, Jean JS.

Water Res. 2010 Nov;44(19):5589-604. doi: 10.1016/j.watres.2010.09.029. Epub 2010 Oct 7.

PMID:
21035830
12.

Mapping of spatial multi-scale sources of arsenic variation in groundwater on ChiaNan floodplain of Taiwan.

Lin YB, Lin YP, Liu CW, Tan YC.

Sci Total Environ. 2006 Oct 15;370(1):168-81. Epub 2006 Aug 9.

PMID:
16904165
13.

Nitrate in groundwater of the United States, 1991-2003.

Burow KR, Nolan BT, Rupert MG, Dubrovsky NM.

Environ Sci Technol. 2010 Jul 1;44(13):4988-97. doi: 10.1021/es100546y.

PMID:
20540531
14.

Determining the probability of arsenic in groundwater using a parsimonious model.

Lee JJ, Jang CS, Liu CW, Liang CP, Wang SW.

Environ Sci Technol. 2009 Sep 1;43(17):6662-8.

PMID:
19764232
15.

Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches.

McLay CD, Dragten R, Sparling G, Selvarajah N.

Environ Pollut. 2001;115(2):191-204.

PMID:
11706792
16.

Natural and anthropogenic factors affecting the groundwater quality in Serbia.

Devic G, Djordjevic D, Sakan S.

Sci Total Environ. 2014 Jan 15;468-469:933-42. doi: 10.1016/j.scitotenv.2013.09.011. Epub 2013 Sep 28.

PMID:
24080418
17.

Coupling predicted model of arsenic in groundwater with endemic arsenism occurrence in Shanxi Province, Northern China.

Zhang Q, Rodriguez-Lado L, Liu J, Johnson CA, Zheng Q, Sun G.

J Hazard Mater. 2013 Nov 15;262:1147-53. doi: 10.1016/j.jhazmat.2013.02.017. Epub 2013 Feb 19.

PMID:
23537794
18.

Hydrochemical characterization of arsenic contaminated alluvial aquifers in Eastern Croatia using multivariate statistical techniques and arsenic risk assessment.

Ujević Bošnjak M, Capak K, Jazbec A, Casiot C, Sipos L, Poljak V, Dadić Z.

Sci Total Environ. 2012 Mar 15;420:100-10. doi: 10.1016/j.scitotenv.2012.01.021. Epub 2012 Feb 10.

PMID:
22326140
19.

Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh.

Reza AH, Jean JS, Lee MK, Liu CC, Bundschuh J, Yang HJ, Lee JF, Lee YC.

Water Res. 2010 Nov;44(19):5556-74. doi: 10.1016/j.watres.2010.09.004. Epub 2010 Sep 15.

PMID:
20875661
20.

Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population.

Buschmann J, Berg M, Stengel C, Winkel L, Sampson ML, Trang PT, Viet PH.

Environ Int. 2008 Aug;34(6):756-64. doi: 10.1016/j.envint.2007.12.025. Epub 2008 Mar 4.

PMID:
18291528

Supplemental Content

Support Center