Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.
2.

Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation.

Chi Fru E, Ivarsson M, Kilias SP, Bengtson S, Belivanova V, Marone F, Fortin D, Broman C, Stampanoni M.

Nat Commun. 2013;4:2050. doi: 10.1038/ncomms3050.

PMID:
23784372
3.

Was there really an Archean phosphate crisis?

Konhauser KO, Lalonde SV, Amskold L, Holland HD.

Science. 2007 Mar 2;315(5816):1234.

4.

Biogeochemistry of dihydrogen (H2).

Hoehler TM.

Met Ions Biol Syst. 2005;43:9-48. Review.

PMID:
16370113
6.

Biologically recycled continental iron is a major component in banded iron formations.

Li W, Beard BL, Johnson CM.

Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8193-8. doi: 10.1073/pnas.1505515112. Epub 2015 Jun 24.

7.

Microbial diversity and iron oxidation at Okuoku-hachikurou Onsen, a Japanese hot spring analog of Precambrian iron formations.

Ward LM, Idei A, Terajima S, Kakegawa T, Fischer WW, McGlynn SE.

Geobiology. 2017 Nov;15(6):817-835. doi: 10.1111/gbi.12266.

PMID:
29035022
8.

The evolution of the marine phosphate reservoir.

Planavsky NJ, Rouxel OJ, Bekker A, Lalonde SV, Konhauser KO, Reinhard CT, Lyons TW.

Nature. 2010 Oct 28;467(7319):1088-90. doi: 10.1038/nature09485.

PMID:
20981096
9.

The onset of widespread marine red beds and the evolution of ferruginous oceans.

Song H, Jiang G, Poulton SW, Wignall PB, Tong J, Song H, An Z, Chu D, Tian L, She Z, Wang C.

Nat Commun. 2017 Aug 30;8(1):399. doi: 10.1038/s41467-017-00502-x.

10.

Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides.

Bjerrum CJ, Canfield DE.

Nature. 2002 May 9;417(6885):159-62.

PMID:
12000956
11.
12.

Biomass recycling and Earth's early phosphorus cycle.

Kipp MA, Stüeken EE.

Sci Adv. 2017 Nov 22;3(11):eaao4795. doi: 10.1126/sciadv.aao4795. eCollection 2017 Nov.

13.

Oxidative elemental cycling under the low O2 Eoarchean atmosphere.

Frei R, Crowe SA, Bau M, Polat A, Fowle DA, Døssing LN.

Sci Rep. 2016 Feb 11;6:21058. doi: 10.1038/srep21058.

14.

Nutrient Acquisition and the Metabolic Potential of Photoferrotrophic Chlorobi.

Thompson KJ, Simister RL, Hahn AS, Hallam SJ, Crowe SA.

Front Microbiol. 2017 Jul 6;8:1212. doi: 10.3389/fmicb.2017.01212. eCollection 2017.

15.

An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments.

Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S.

Geobiology. 2014 Mar;12(2):172-81. doi: 10.1111/gbi.12077. Epub 2014 Jan 27.

PMID:
24460948
16.

Photoferrotrophs thrive in an Archean Ocean analogue.

Crowe SA, Jones C, Katsev S, Magen C, O'Neill AH, Sturm A, Canfield DE, Haffner GD, Mucci A, Sundby B, Fowle DA.

Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15938-43. doi: 10.1073/pnas.0805313105. Epub 2008 Oct 6.

17.

Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth.

Rasmussen B, Fletcher IR, Bekker A, Muhling JR, Gregory CJ, Thorne AM.

Nature. 2012 Apr 25;484(7395):498-501. doi: 10.1038/nature11021.

PMID:
22538613
19.

Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation.

Lepot K, Addad A, Knoll AH, Wang J, Troadec D, Béché A, Javaux EJ.

Nat Commun. 2017 Mar 23;8:14890. doi: 10.1038/ncomms14890.

20.

Biogenicity of an Early Quaternary iron formation, Milos Island, Greece.

Chi Fru E, Ivarsson M, Kilias SP, Frings PJ, Hemmingsson C, Broman C, Bengtson S, Chatzitheodoridis E.

Geobiology. 2015 May;13(3):225-44. doi: 10.1111/gbi.12128. Epub 2015 Feb 2.

PMID:
25645266

Supplemental Content

Support Center