Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

A trachea-inspired bifurcated microfilter capturing viable circulating tumor cells via altered biophysical properties as measured by atomic force microscopy.

Kim MS, Kim J, Lee W, Cho SJ, Oh JM, Lee JY, Baek S, Kim YJ, Sim TS, Lee HJ, Jung GE, Kim SI, Park JM, Oh JH, Gurel O, Lee SS, Lee JG.

Small. 2013 Sep 23;9(18):3103-10. doi: 10.1002/smll.201202317. Epub 2013 Feb 7.

PMID:
23401221
2.

SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter.

Kim MS, Sim TS, Kim YJ, Kim SS, Jeong H, Park JM, Moon HS, Kim SI, Gurel O, Lee SS, Lee JG, Park JC.

Lab Chip. 2012 Aug 21;12(16):2874-80. doi: 10.1039/c2lc40065k. Epub 2012 Jun 11.

PMID:
22684249
3.

High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.

Huang SB, Wu MH, Lin YH, Hsieh CH, Yang CL, Lin HC, Tseng CP, Lee GB.

Lab Chip. 2013 Apr 7;13(7):1371-83. doi: 10.1039/c3lc41256c.

PMID:
23389102
4.

All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity.

Lee A, Park J, Lim M, Sunkara V, Kim SY, Kim GH, Kim MH, Cho YK.

Anal Chem. 2014 Nov 18;86(22):11349-56. doi: 10.1021/ac5035049. Epub 2014 Oct 30.

PMID:
25317565
5.

A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on a microfilter.

Xu T, Lu B, Tai YC, Goldkorn A.

Cancer Res. 2010 Aug 15;70(16):6420-6. doi: 10.1158/0008-5472.CAN-10-0686. Epub 2010 Jul 27.

6.

Circulating tumor cells: clinically relevant molecular access based on a novel CTC flow cell.

Winer-Jones JP, Vahidi B, Arquilevich N, Fang C, Ferguson S, Harkins D, Hill C, Klem E, Pagano PC, Peasley C, Romero J, Shartle R, Vasko RC, Strauss WM, Dempsey PW.

PLoS One. 2014 Jan 29;9(1):e86717. doi: 10.1371/journal.pone.0086717. eCollection 2014.

7.

Clinically relevant microfluidic magnetophoretic isolation of rare-cell populations for diagnostic and therapeutic monitoring applications.

Plouffe BD, Mahalanabis M, Lewis LH, Klapperich CM, Murthy SK.

Anal Chem. 2012 Feb 7;84(3):1336-44. doi: 10.1021/ac2022844. Epub 2012 Jan 27.

PMID:
22240089
8.

Fully automated circulating tumor cell isolation platform with large-volume capacity based on lab-on-a-disc.

Park JM, Kim MS, Moon HS, Yoo CE, Park D, Kim YJ, Han KY, Lee JY, Oh JH, Kim SS, Park WY, Lee WY, Huh N.

Anal Chem. 2014 Apr 15;86(8):3735-42. doi: 10.1021/ac403456t. Epub 2014 Mar 31.

PMID:
24641782
9.

A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells.

Kang JH, Krause S, Tobin H, Mammoto A, Kanapathipillai M, Ingber DE.

Lab Chip. 2012 Jun 21;12(12):2175-81. doi: 10.1039/c2lc40072c. Epub 2012 Mar 28.

PMID:
22453808
10.

Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood.

Park JM, Lee JY, Lee JG, Jeong H, Oh JM, Kim YJ, Park D, Kim MS, Lee HJ, Oh JH, Lee SS, Lee WY, Huh N.

Anal Chem. 2012 Sep 4;84(17):7400-7. doi: 10.1021/ac3011704. Epub 2012 Aug 23.

PMID:
22881997
11.

Microfluidic platform for negative enrichment of circulating tumor cells.

Sajay BN, Chang CP, Ahmad H, Khuntontong P, Wong CC, Wang Z, Puiu PD, Soo R, Rahman AR.

Biomed Microdevices. 2014 Aug;16(4):537-48. doi: 10.1007/s10544-014-9856-2.

PMID:
24668439
12.

Enumeration, characterization, and collection of intact circulating tumor cells by cross contamination-free flow cytometry.

Takao M, Takeda K.

Cytometry A. 2011 Feb;79(2):107-17. doi: 10.1002/cyto.a.21014. Epub 2011 Jan 18.

13.

Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells.

Tang Y, Shi J, Li S, Wang L, Cayre YE, Chen Y.

Sci Rep. 2014 Aug 13;4:6052. doi: 10.1038/srep06052.

14.

Continuous enrichment of circulating tumor cells using a microfluidic lateral flow filtration chip.

Lee SW, Hyun KA, Kim SI, Kang JY, Jung HI.

J Chromatogr A. 2015 Jan 16;1377:100-5. doi: 10.1016/j.chroma.2014.12.037. Epub 2014 Dec 18.

PMID:
25542705
15.

Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis.

Augustsson P, Magnusson C, Nordin M, Lilja H, Laurell T.

Anal Chem. 2012 Sep 18;84(18):7954-62. doi: 10.1021/ac301723s. Epub 2012 Aug 28.

16.

Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells.

Zheng S, Lin H, Liu JQ, Balic M, Datar R, Cote RJ, Tai YC.

J Chromatogr A. 2007 Aug 31;1162(2):154-61. Epub 2007 May 29.

PMID:
17561026
17.

Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices.

Wan Y, Tan J, Asghar W, Kim YT, Liu Y, Iqbal SM.

J Phys Chem B. 2011 Dec 1;115(47):13891-6. doi: 10.1021/jp205511m. Epub 2011 Nov 7.

PMID:
22029250
18.

Diagnostic microchip to assay 3D colony-growth potential of captured circulating tumor cells.

Bichsel CA, Gobaa S, Kobel S, Secondini C, Thalmann GN, Cecchini MG, Lutolf MP.

Lab Chip. 2012 Jul 7;12(13):2313-6. doi: 10.1039/c2lc40130d. Epub 2012 May 8.

PMID:
22565166
19.

High throughput capture of circulating tumor cells using an integrated microfluidic system.

Liu Z, Zhang W, Huang F, Feng H, Shu W, Xu X, Chen Y.

Biosens Bioelectron. 2013 Sep 15;47:113-9. doi: 10.1016/j.bios.2013.03.017. Epub 2013 Mar 21.

PMID:
23567630
20.

Portable filter-based microdevice for detection and characterization of circulating tumor cells.

Lin HK, Zheng S, Williams AJ, Balic M, Groshen S, Scher HI, Fleisher M, Stadler W, Datar RH, Tai YC, Cote RJ.

Clin Cancer Res. 2010 Oct 15;16(20):5011-8. doi: 10.1158/1078-0432.CCR-10-1105. Epub 2010 Sep 28.

Supplemental Content

Support Center