Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 108

1.

Isolation of mesenchymal stem cells from human bone and long-term cultivation under physiologic oxygen conditions.

Klepsch S, Jamnig A, Trimmel D, Schimke M, Kapferer W, Brunauer R, Singh S, Reitinger S, Lepperdinger G.

Methods Mol Biol. 2013;976:99-109. doi: 10.1007/978-1-62703-317-6_8.

PMID:
23400437
2.

Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions.

Schallmoser K, Bartmann C, Rohde E, Bork S, Guelly C, Obenauf AC, Reinisch A, Horn P, Ho AD, Strunk D, Wagner W.

Haematologica. 2010 Jun;95(6):867-74. doi: 10.3324/haematol.2009.011692. Epub 2010 Jan 6.

3.

Atmospheric oxygen inhibits growth and differentiation of marrow-derived mouse mesenchymal stem cells via a p53-dependent mechanism: implications for long-term culture expansion.

Boregowda SV, Krishnappa V, Chambers JW, Lograsso PV, Lai WT, Ortiz LA, Phinney DG.

Stem Cells. 2012 May;30(5):975-87. doi: 10.1002/stem.1069.

4.

Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy.

Haack-Sorensen M, Friis T, Bindslev L, Mortensen S, Johnsen HE, Kastrup J.

Scand J Clin Lab Invest. 2008;68(3):192-203.

PMID:
17852829
5.

Efficient engineering of vascularized ectopic bone from human embryonic stem cell-derived mesenchymal stem cells.

Domev H, Amit M, Laevsky I, Dar A, Itskovitz-Eldor J.

Tissue Eng Part A. 2012 Nov;18(21-22):2290-302. doi: 10.1089/ten.TEA.2011.0371. Epub 2012 Aug 2.

PMID:
22731654
6.

Good manufacturing practice-compliant animal-free expansion of human bone marrow derived mesenchymal stroma cells in a closed hollow-fiber-based bioreactor.

Nold P, Brendel C, Neubauer A, Bein G, Hackstein H.

Biochem Biophys Res Commun. 2013 Jan 4;430(1):325-30. doi: 10.1016/j.bbrc.2012.11.001. Epub 2012 Nov 9.

PMID:
23146633
7.

Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions.

Santos Fd, Andrade PZ, Abecasis MM, Gimble JM, Chase LG, Campbell AM, Boucher S, Vemuri MC, Silva CL, Cabral JM.

Tissue Eng Part C Methods. 2011 Dec;17(12):1201-10. doi: 10.1089/ten.tec.2011.0255. Epub 2011 Sep 6.

8.

Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC.

Tamama K, Kawasaki H, Wells A.

J Biomed Biotechnol. 2010;2010:795385. doi: 10.1155/2010/795385. Epub 2010 Feb 17. Review.

9.

Oxygen tension modifies the 'stemness' of human cord blood-derived stem cells.

Buchheiser A, Houben AP, Bosch J, Marbach J, Liedtke S, Kögler G.

Cytotherapy. 2012 Sep;14(8):967-82. doi: 10.3109/14653249.2012.671518. Epub 2012 Apr 12.

PMID:
22494073
10.

Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow.

Bieback K, Hecker A, Kocaömer A, Lannert H, Schallmoser K, Strunk D, Klüter H.

Stem Cells. 2009 Sep;27(9):2331-41. doi: 10.1002/stem.139.

11.

Isolation and culture of mesenchymal stem cells from mouse compact bone.

Short B, Wagey R.

Methods Mol Biol. 2013;946:335-47. doi: 10.1007/978-1-62703-128-8_21.

PMID:
23179842
12.

Expansion of the human adipose-derived stromal vascular cell fraction yields a population of smooth muscle-like cells with markedly distinct phenotypic and functional properties relative to mesenchymal stem cells.

Basu J, Genheimer CW, Guthrie KI, Sangha N, Quinlan SF, Bruce AT, Reavis B, Halberstadt C, Ilagan RM, Ludlow JW.

Tissue Eng Part C Methods. 2011 Aug;17(8):843-60. doi: 10.1089/ten.tec.2010.0697. Epub 2011 May 19.

PMID:
21595545
13.

Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells.

Adesida AB, Mulet-Sierra A, Jomha NM.

Stem Cell Res Ther. 2012 Mar 2;3(2):9. doi: 10.1186/scrt100.

14.

Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation.

Mamidi MK, Nathan KG, Singh G, Thrichelvam ST, Mohd Yusof NA, Fakharuzi NA, Zakaria Z, Bhonde R, Das AK, Majumdar AS.

J Cell Biochem. 2012 Oct;113(10):3153-64. doi: 10.1002/jcb.24193.

PMID:
22615164
15.
16.

Characterization of placenta-derived mesenchymal stem cells cultured in autologous human cord blood serum.

Wang L, Yang Y, Zhu Y, Ma X, Liu T, Zhang G, Fan H, Ma L, Jin Y, Yan X, Wei J, Li Y.

Mol Med Rep. 2012 Oct;6(4):760-6. doi: 10.3892/mmr.2012.1000. Epub 2012 Jul 23.

PMID:
22824952
17.

Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions.

Hatlapatka T, Moretti P, Lavrentieva A, Hass R, Marquardt N, Jacobs R, Kasper C.

Tissue Eng Part C Methods. 2011 Apr;17(4):485-93. doi: 10.1089/ten.TEC.2010.0406. Epub 2011 Jan 19.

PMID:
21166520
18.
19.

Mesenchymal stromal cell phenotype is not influenced by confluence during culture expansion.

Haack-Sørensen M, Hansen SK, Hansen L, Gaster M, Hyttel P, Ekblond A, Kastrup J.

Stem Cell Rev. 2013 Feb;9(1):44-58. doi: 10.1007/s12015-012-9386-3.

PMID:
22644809
20.

Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources.

Wu L, Prins HJ, Helder MN, van Blitterswijk CA, Karperien M.

Tissue Eng Part A. 2012 Aug;18(15-16):1542-51. doi: 10.1089/ten.TEA.2011.0715. Epub 2012 Apr 26.

PMID:
22429306

Supplemental Content

Support Center