Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 162

1.

A robust and efficient statistical method for genetic association studies using case and control samples from multiple cohorts.

Wang M, Wang L, Jiang N, Jia T, Luo Z.

BMC Genomics. 2013 Feb 8;14:88. doi: 10.1186/1471-2164-14-88.

2.

A robust statistical method for association-based eQTL analysis.

Jiang N, Wang M, Jia T, Wang L, Leach L, Hackett C, Marshall D, Luo Z.

PLoS One. 2011;6(8):e23192. doi: 10.1371/journal.pone.0023192. Epub 2011 Aug 9.

3.

Analysis of GWAS-linked loci in Parkinson disease reaffirms PARK16 as a susceptibility locus.

Tan EK, Kwok HH, Tan LC, Zhao WT, Prakash KM, Au WL, Pavanni R, Ng YY, Satake W, Zhao Y, Toda T, Liu JJ.

Neurology. 2010 Aug 10;75(6):508-12. doi: 10.1212/WNL.0b013e3181eccfcd. Erratum in: Neurology. 2010 Oct 12;75(15):1399. Kwok, H-K [corrected to Kwok, H-H].

4.

A hidden Markov random field model for genome-wide association studies.

Li H, Wei Z, Maris J.

Biostatistics. 2010 Jan;11(1):139-50. doi: 10.1093/biostatistics/kxp043. Epub 2009 Oct 12.

5.

Genome-wide two-marker linkage disequilibrium mapping of quantitative trait loci.

Yang J, Zhu W, Chen J, Zhang Q, Wu S.

BMC Genet. 2014 Feb 8;15:20. doi: 10.1186/1471-2156-15-20.

6.

Testing association between LRRK2 and Parkinson's disease and investigating linkage disequilibrium.

Paisán-Ruíz C, Evans EW, Jain S, Xiromerisiou G, Gibbs JR, Eerola J, Gourbali V, Hellström O, Duckworth J, Papadimitriou A, Tienari PJ, Hadjigeorgiou GM, Singleton AB.

J Med Genet. 2006 Feb;43(2):e9.

7.

Inferring linkage disequilibrium from non-random samples.

Wang M, Jia T, Jiang N, Wang L, Hu X, Luo Z.

BMC Genomics. 2010 May 26;11:328. doi: 10.1186/1471-2164-11-328.

8.

Patterns of linkage disequilibrium of LRRK2 across different races: implications for genetic association studies.

Li H, Teo YY, Tan EK.

PLoS One. 2013 Sep 5;8(9):e75041. doi: 10.1371/journal.pone.0075041. eCollection 2013.

9.

Genome-wide association study identifies candidate genes for Parkinson's disease in an Ashkenazi Jewish population.

Liu X, Cheng R, Verbitsky M, Kisselev S, Browne A, Mejia-Sanatana H, Louis ED, Cote LJ, Andrews H, Waters C, Ford B, Frucht S, Fahn S, Marder K, Clark LN, Lee JH.

BMC Med Genet. 2011 Aug 3;12:104. doi: 10.1186/1471-2350-12-104.

10.

Exploiting Linkage Disequilibrium for Ultrahigh-Dimensional Genome-Wide Data with an Integrated Statistical Approach.

Carlsen M, Fu G, Bushman S, Corcoran C.

Genetics. 2016 Feb;202(2):411-26. doi: 10.1534/genetics.115.179507. Epub 2015 Dec 12.

11.

ATRIUM: testing untyped SNPs in case-control association studies with related individuals.

Wang Z, McPeek MS.

Am J Hum Genet. 2009 Nov;85(5):667-78. doi: 10.1016/j.ajhg.2009.10.006.

12.

Shrinkage estimation for robust and efficient screening of single-SNP association from case-control genome-wide association studies.

Luo S, Mukherjee B, Chen J, Chatterjee N.

Genet Epidemiol. 2009 Dec;33(8):740-50. doi: 10.1002/gepi.20428.

13.

Association of Parkinson's disease with six single nucleotide polymorphisms located in four PARK genes in the northern Han Chinese population.

Zhou Y, Luo X, Li F, Tian X, Zhu L, Yang Y, Ren Y, Pang H.

J Clin Neurosci. 2012 Jul;19(7):1011-5. doi: 10.1016/j.jocn.2011.09.028. Epub 2012 May 8.

PMID:
22575062
14.

Association of sequence alterations in the putative promoter of RAB7L1 with a reduced parkinson disease risk.

Gan-Or Z, Bar-Shira A, Dahary D, Mirelman A, Kedmi M, Gurevich T, Giladi N, Orr-Urtreger A.

Arch Neurol. 2012 Jan;69(1):105-10. doi: 10.1001/archneurol.2011.924.

PMID:
22232350
15.

Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case-control study.

Ross OA, Soto-Ortolaza AI, Heckman MG, Aasly JO, Abahuni N, Annesi G, Bacon JA, Bardien S, Bozi M, Brice A, Brighina L, Van Broeckhoven C, Carr J, Chartier-Harlin MC, Dardiotis E, Dickson DW, Diehl NN, Elbaz A, Ferrarese C, Ferraris A, Fiske B, Gibson JM, Gibson R, Hadjigeorgiou GM, Hattori N, Ioannidis JP, Jasinska-Myga B, Jeon BS, Kim YJ, Klein C, Kruger R, Kyratzi E, Lesage S, Lin CH, Lynch T, Maraganore DM, Mellick GD, Mutez E, Nilsson C, Opala G, Park SS, Puschmann A, Quattrone A, Sharma M, Silburn PA, Sohn YH, Stefanis L, Tadic V, Theuns J, Tomiyama H, Uitti RJ, Valente EM, van de Loo S, Vassilatis DK, Vilariño-Güell C, White LR, Wirdefeldt K, Wszolek ZK, Wu RM, Farrer MJ; Genetic Epidemiology Of Parkinson's Disease (GEO-PD) Consortium.

Lancet Neurol. 2011 Oct;10(10):898-908. doi: 10.1016/S1474-4422(11)70175-2. Epub 2011 Aug 30. Erratum in: Lancet Neurol. 2011 Oct;10(10):870.

16.

SNP-based pathway enrichment analysis for genome-wide association studies.

Weng L, Macciardi F, Subramanian A, Guffanti G, Potkin SG, Yu Z, Xie X.

BMC Bioinformatics. 2011 Apr 15;12:99. doi: 10.1186/1471-2105-12-99.

17.

A Markov blanket-based method for detecting causal SNPs in GWAS.

Han B, Park M, Chen XW.

BMC Bioinformatics. 2010 Apr 29;11 Suppl 3:S5. doi: 10.1186/1471-2105-11-S3-S5.

18.

A flexible genome-wide bootstrap method that accounts for ranking and threshold-selection bias in GWAS interpretation and replication study design.

Faye LL, Sun L, Dimitromanolakis A, Bull SB.

Stat Med. 2011 Jul 10;30(15):1898-912. doi: 10.1002/sim.4228. Epub 2011 May 3.

PMID:
21538984
19.

Association analysis of STK39, MCCC1/LAMP3 and sporadic PD in the Chinese Han population.

Wang YQ, Tang BS, Yu RL, Li K, Liu ZH, Xu Q, Sun QY, Yan XX, Guo JF.

Neurosci Lett. 2014 Apr 30;566:206-9. doi: 10.1016/j.neulet.2014.03.007. Epub 2014 Mar 12.

PMID:
24631562
20.

Quantitative assessment of the effect of LRRK2 exonic variants on the risk of Parkinson's disease: a meta-analysis.

Wu X, Tang KF, Li Y, Xiong YY, Shen L, Wei ZY, Zhou KJ, Niu JM, Han X, Yang L, Feng GY, He L, Qin SY.

Parkinsonism Relat Disord. 2012 Jul;18(6):722-30. doi: 10.1016/j.parkreldis.2012.04.013. Epub 2012 May 8. Review.

PMID:
22575234

Supplemental Content

Support Center