Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 197

1.

Post-exercise whey protein hydrolysate supplementation induces a greater increase in muscle protein synthesis than its constituent amino acid content.

Kanda A, Nakayama K, Fukasawa T, Koga J, Kanegae M, Kawanaka K, Higuchi M.

Br J Nutr. 2013 Sep 28;110(6):981-7. doi: 10.1017/S0007114512006174. Epub 2013 Feb 7.

PMID:
23388415
2.

Post-exercise carbohydrate plus whey protein hydrolysates supplementation increases skeletal muscle glycogen level in rats.

Morifuji M, Kanda A, Koga J, Kawanaka K, Higuchi M.

Amino Acids. 2010 Apr;38(4):1109-15. doi: 10.1007/s00726-009-0321-0. Epub 2009 Jul 11.

PMID:
19593593
3.

Adding protein to a carbohydrate supplement provided after endurance exercise enhances 4E-BP1 and RPS6 signaling in skeletal muscle.

Morrison PJ, Hara D, Ding Z, Ivy JL.

J Appl Physiol (1985). 2008 Apr;104(4):1029-36. doi: 10.1152/japplphysiol.01173.2007. Epub 2008 Jan 31.

4.

Post-exercise impact of ingested whey protein hydrolysate on gene expression profiles in rat skeletal muscle: activation of extracellular signal-regulated kinase 1/2 and hypoxia-inducible factor-1α.

Kanda A, Ishijima T, Shinozaki F, Nakayama K, Fukasawa T, Nakai Y, Abe K, Kawahata K, Ikegami S.

Br J Nutr. 2014 Jun 28;111(12):2067-78. doi: 10.1017/S0007114514000233. Epub 2014 Mar 6.

PMID:
24598469
5.

Preexercise ingestion of carbohydrate plus whey protein hydrolysates attenuates skeletal muscle glycogen depletion during exercise in rats.

Morifuji M, Kanda A, Koga J, Kawanaka K, Higuchi M.

Nutrition. 2011 Jul-Aug;27(7-8):833-7. doi: 10.1016/j.nut.2010.08.021. Epub 2010 Nov 3.

PMID:
21050718
6.

Intravenous administration of amino acids during anesthesia stimulates muscle protein synthesis and heat accumulation in the body.

Yamaoka I, Doi M, Nakayama M, Ozeki A, Mochizuki S, Sugahara K, Yoshizawa F.

Am J Physiol Endocrinol Metab. 2006 May;290(5):E882-8. Epub 2005 Dec 13.

7.

Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise.

Kanda A, Nakayama K, Sanbongi C, Nagata M, Ikegami S, Itoh H.

Nutrients. 2016 Jun 3;8(6). pii: E339. doi: 10.3390/nu8060339.

8.

Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability.

Beugnet A, Tee AR, Taylor PM, Proud CG.

Biochem J. 2003 Jun 1;372(Pt 2):555-66. Erratum in: Biochem J. 2003 Aug 1;373(Pt 3):999.

9.
10.

Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy.

Rahbek SK, Farup J, Møller AB, Vendelbo MH, Holm L, Jessen N, Vissing K.

Amino Acids. 2014 Oct;46(10):2377-92. doi: 10.1007/s00726-014-1792-1. Epub 2014 Jul 9.

PMID:
25005782
11.

Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner.

Kubica N, Bolster DR, Farrell PA, Kimball SR, Jefferson LS.

J Biol Chem. 2005 Mar 4;280(9):7570-80. Epub 2004 Dec 10.

12.

Effects of leucine or whey protein addition to an oral glucose solution on serum insulin, plasma glucose and plasma amino acid responses in horses at rest and following exercise.

Urschel KL, Geor RJ, Waterfall HL, Shoveller AK, McCutcheon LJ.

Equine Vet J Suppl. 2010 Nov;(38):347-54. doi: 10.1111/j.2042-3306.2010.00179.x.

PMID:
21059029
13.

Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle.

Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E, Rasmussen BB.

Am J Physiol Endocrinol Metab. 2008 Feb;294(2):E392-400. Epub 2007 Dec 4.

14.

Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway.

Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR.

J Nutr. 2000 Oct;130(10):2413-9.

15.

Whey protein intake after resistance exercise activates mTOR signaling in a dose-dependent manner in human skeletal muscle.

Kakigi R, Yoshihara T, Ozaki H, Ogura Y, Ichinoseki-Sekine N, Kobayashi H, Naito H.

Eur J Appl Physiol. 2014 Apr;114(4):735-42. doi: 10.1007/s00421-013-2812-7. Epub 2014 Jan 3.

PMID:
24384983
16.

Whey and casein labeled with L-[1-13C]leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion.

Reitelseder S, Agergaard J, Doessing S, Helmark IC, Lund P, Kristensen NB, Frystyk J, Flyvbjerg A, Schjerling P, van Hall G, Kjaer M, Holm L.

Am J Physiol Endocrinol Metab. 2011 Jan;300(1):E231-42. doi: 10.1152/ajpendo.00513.2010. Epub 2010 Nov 2.

17.

Mammalian target of rapamycin-independent S6K1 and 4E-BP1 phosphorylation during contraction in rat skeletal muscle.

Liu Y, Vertommen D, Rider MH, Lai YC.

Cell Signal. 2013 Sep;25(9):1877-86. doi: 10.1016/j.cellsig.2013.05.005. Epub 2013 May 22.

PMID:
23707523
18.

Amino acids and insulin are both required to regulate assembly of the eIF4E. eIF4G complex in rat skeletal muscle.

Balage M, Sinaud S, Prod'homme M, Dardevet D, Vary TC, Kimball SR, Jefferson LS, Grizard J.

Am J Physiol Endocrinol Metab. 2001 Sep;281(3):E565-74.

19.

Meal feeding enhances formation of eIF4F in skeletal muscle: role of increased eIF4E availability and eIF4G phosphorylation.

Vary TC, Lynch CJ.

Am J Physiol Endocrinol Metab. 2006 Apr;290(4):E631-42. Epub 2005 Nov 1.

20.

Exercise in ZDF rats does not attenuate weight gain, but prevents hyperglycemia concurrent with modulation of amino acid metabolism and AKT/mTOR activation in skeletal muscle.

Adegoke OA, Bates HE, Kiraly MA, Vranic M, Riddell MC, Marliss EB.

Eur J Nutr. 2015 Aug;54(5):751-9. doi: 10.1007/s00394-014-0754-4. Epub 2014 Aug 13.

PMID:
25120109

Supplemental Content

Support Center