Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 148

1.

Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone.

Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG.

New Phytol. 2013 Apr;198(1):190-202. doi: 10.1111/nph.12146. Epub 2013 Feb 6.

2.

Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis.

Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DG, Bonfante P.

New Phytol. 2011 Jan;189(1):347-55. doi: 10.1111/j.1469-8137.2010.03464.x. Epub 2010 Sep 29.

3.

Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula.

Camps C, Jardinaud MF, Rengel D, Carrère S, Hervé C, Debellé F, Gamas P, Bensmihen S, Gough C.

New Phytol. 2015 Oct;208(1):224-40. doi: 10.1111/nph.13427. Epub 2015 Apr 28.

4.

Aphanomyces euteiches cell wall fractions containing novel glucan-chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host Medicago truncatula.

Nars A, Lafitte C, Chabaud M, Drouillard S, Mélida H, Danoun S, Le Costaouëc T, Rey T, Benedetti J, Bulone V, Barker DG, Bono JJ, Dumas B, Jacquet C, Heux L, Fliegmann J, Bottin A.

PLoS One. 2013 Sep 23;8(9):e75039. doi: 10.1371/journal.pone.0075039. eCollection 2013.

6.

Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides.

Czaja LF, Hogekamp C, Lamm P, Maillet F, Martinez EA, Samain E, Dénarié J, Küster H, Hohnjec N.

Plant Physiol. 2012 Aug;159(4):1671-85. doi: 10.1104/pp.112.195990. Epub 2012 May 31.

7.

Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice.

Sun J, Miller JB, Granqvist E, Wiley-Kalil A, Gobbato E, Maillet F, Cottaz S, Samain E, Venkateshwaran M, Fort S, Morris RJ, Ané JM, Dénarié J, Oldroyd GE.

Plant Cell. 2015 Mar;27(3):823-38. doi: 10.1105/tpc.114.131326. Epub 2015 Feb 27.

8.

A role for the mevalonate pathway in early plant symbiotic signaling.

Venkateshwaran M, Jayaraman D, Chabaud M, Genre A, Balloon AJ, Maeda J, Forshey K, den Os D, Kwiecien NW, Coon JJ, Barker DG, Ané JM.

Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9781-6. doi: 10.1073/pnas.1413762112. Epub 2015 Jul 21. Erratum in: Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5378.

9.

Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions.

Seddas PM, Arias CM, Arnould C, van Tuinen D, Godfroy O, Benhassou HA, Gouzy J, Morandi D, Dessaint F, Gianinazzi-Pearson V.

Mol Plant Microbe Interact. 2009 Mar;22(3):341-51. doi: 10.1094/MPMI-22-3-0341.

10.

A nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors.

Sieberer BJ, Chabaud M, Timmers AC, Monin A, Fournier J, Barker DG.

Plant Physiol. 2009 Nov;151(3):1197-206. doi: 10.1104/pp.109.142851. Epub 2009 Aug 21.

11.

A switch in Ca2+ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of Medicago truncatula.

Sieberer BJ, Chabaud M, Fournier J, Timmers AC, Barker DG.

Plant J. 2012 Mar;69(5):822-30. doi: 10.1111/j.1365-313X.2011.04834.x. Epub 2011 Dec 16.

12.

Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene.

Mukherjee A, Ané JM.

Mol Plant Microbe Interact. 2011 Feb;24(2):260-70. doi: 10.1094/MPMI-06-10-0146.

PMID:
21043574
14.
15.

The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2.

Lauressergues D, Delaux PM, Formey D, Lelandais-Brière C, Fort S, Cottaz S, Bécard G, Niebel A, Roux C, Combier JP.

Plant J. 2012 Nov;72(3):512-22. doi: 10.1111/j.1365-313X.2012.05099.x. Epub 2012 Aug 30.

16.

The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots.

Calcagno C, Novero M, Genre A, Bonfante P, Lanfranco L.

Mycorrhiza. 2012 May;22(4):259-69. doi: 10.1007/s00572-011-0400-4. Epub 2011 Jul 9.

PMID:
21744141
17.

Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula.

Murray JD, Muni RR, Torres-Jerez I, Tang Y, Allen S, Andriankaja M, Li G, Laxmi A, Cheng X, Wen J, Vaughan D, Schultze M, Sun J, Charpentier M, Oldroyd G, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK.

Plant J. 2011 Jan;65(2):244-52. doi: 10.1111/j.1365-313X.2010.04415.x. Epub 2010 Nov 29.

18.

NSP1 is a component of the Myc signaling pathway.

Delaux PM, Bécard G, Combier JP.

New Phytol. 2013 Jul;199(1):59-65. doi: 10.1111/nph.12340. Epub 2013 May 13.

19.

A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula.

Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarié J, Barker DG, Bécard G.

Plant Physiol. 2003 Mar;131(3):952-62.

20.

The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots.

Riely BK, Lougnon G, Ané JM, Cook DR.

Plant J. 2007 Jan;49(2):208-16. Epub 2006 Dec 14.

Supplemental Content

Support Center