Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Genetic analysis of D-xylose metabolism pathways in Gluconobacter oxydans 621H.

Zhang M, Wei L, Zhou Y, Du L, Imanaka T, Hua Q.

J Ind Microbiol Biotechnol. 2013 Apr;40(3-4):379-88. doi: 10.1007/s10295-013-1231-4. Epub 2013 Feb 5.

PMID:
23381123
2.

Revealing in vivo glucose utilization of Gluconobacter oxydans 621H Δmgdh strain by mutagenesis.

Wei L, Zhu D, Zhou J, Zhang J, Zhu K, Du L, Hua Q.

Microbiol Res. 2014 May-Jun;169(5-6):469-75. doi: 10.1016/j.micres.2013.08.002. Epub 2013 Sep 10.

3.

Purification of xylitol dehydrogenase and improved production of xylitol by increasing XDH activity and NADH supply in Gluconobacter oxydans.

Zhang J, Li S, Xu H, Zhou P, Zhang L, Ouyang P.

J Agric Food Chem. 2013 Mar 20;61(11):2861-7. doi: 10.1021/jf304983d. Epub 2013 Mar 6.

PMID:
23432201
4.

Cloning and characterization of a novel NAD+ -dependent xylitol dehydrogenase from Gluconobacter oxydans CGMCC 1. 637.

Lin Y, Xie Z, Zhang J, Bao W, Pan H, Li B.

Wei Sheng Wu Xue Bao. 2012 Jun 4;52(6):726-35.

PMID:
22934353
5.

Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation.

Krajewski V, Simic P, Mouncey NJ, Bringer S, Sahm H, Bott M.

Appl Environ Microbiol. 2010 Jul;76(13):4369-76. doi: 10.1128/AEM.03022-09. Epub 2010 May 7.

6.

Enhanced xylitol production: Expression of xylitol dehydrogenase from Gluconobacter oxydans and mixed culture of resting cell.

Qi XH, Zhu JF, Yun JH, Lin J, Qi YL, Guo Q, Xu H.

J Biosci Bioeng. 2016 Sep;122(3):257-62. doi: 10.1016/j.jbiosc.2016.02.009. Epub 2016 Mar 11.

PMID:
26975753
7.

Construction and co-expression of plasmid encoding xylitol dehydrogenase and a cofactor regeneration enzyme for the production of xylitol from D-arabitol.

Zhou P, Li S, Xu H, Feng X, Ouyang P.

Enzyme Microb Technol. 2012 Jul 15;51(2):119-24. doi: 10.1016/j.enzmictec.2012.05.002. Epub 2012 May 14.

PMID:
22664197
8.

Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase.

Matsushika A, Watanabe S, Kodaki T, Makino K, Sawayama S.

J Biosci Bioeng. 2008 Mar;105(3):296-9. doi: 10.1263/jbb.105.296.

PMID:
18397783
9.

Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans.

Suzuki S, Sugiyama M, Mihara Y, Hashiguchi K, Yokozeki K.

Biosci Biotechnol Biochem. 2002 Dec;66(12):2614-20.

10.

Improved Xylitol Production from D-Arabitol by Enhancing the Coenzyme Regeneration Efficiency of the Pentose Phosphate Pathway in Gluconobacter oxydans.

Li S, Zhang J, Xu H, Feng X.

J Agric Food Chem. 2016 Feb 10;64(5):1144-50. doi: 10.1021/acs.jafc.5b05509. Epub 2016 Feb 1.

PMID:
26727541
11.

Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process.

Cheng H, Lv J, Wang H, Wang B, Li Z, Deng Z.

Appl Microbiol Biotechnol. 2014 Apr;98(8):3539-52. doi: 10.1007/s00253-013-5501-x. Epub 2014 Jan 14.

PMID:
24419799
12.

Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.

Hölscher T, Görisch H.

J Bacteriol. 2006 Nov;188(21):7668-76. Epub 2006 Aug 25.

13.

Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.

Lee SH, Kodaki T, Park YC, Seo JH.

J Biotechnol. 2012 Apr 30;158(4):184-91. doi: 10.1016/j.jbiotec.2011.06.005. Epub 2011 Jun 15.

PMID:
21699927
14.

Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.

Meyer M, Schweiger P, Deppenmeier U.

Appl Microbiol Biotechnol. 2013 Apr;97(8):3457-66. doi: 10.1007/s00253-012-4265-z. Epub 2012 Jul 12.

PMID:
22790543
15.

Bioconversion of d-xylose to d-xylonate with Kluyveromyces lactis.

Nygård Y, Toivari MH, Penttilä M, Ruohonen L, Wiebe MG.

Metab Eng. 2011 Jul;13(4):383-91. doi: 10.1016/j.ymben.2011.04.001. Epub 2011 Apr 22.

PMID:
21515401
16.
17.
18.

SdhE-dependent formation of a functional Acetobacter pasteurianus succinate dehydrogenase in Gluconobacter oxydans--a first step toward a complete tricarboxylic acid cycle.

Kiefler I, Bringer S, Bott M.

Appl Microbiol Biotechnol. 2015 Nov;99(21):9147-60. doi: 10.1007/s00253-015-6972-8. Epub 2015 Sep 23.

PMID:
26399411
19.
20.

A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.

Bera AK, Ho NW, Khan A, Sedlak M.

J Ind Microbiol Biotechnol. 2011 May;38(5):617-26. doi: 10.1007/s10295-010-0806-6. Epub 2010 Aug 17.

PMID:
20714780

Supplemental Content

Support Center