Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 380

1.

Characterisation of the wheat (Triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in Pi-stressed wheat.

Oono Y, Kobayashi F, Kawahara Y, Yazawa T, Handa H, Itoh T, Matsumoto T.

BMC Genomics. 2013 Feb 4;14:77. doi: 10.1186/1471-2164-14-77.

2.

Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance.

Li A, Zhang R, Pan L, Tang L, Zhao G, Zhu M, Chu J, Sun X, Wei B, Zhang X, Jia J, Mao L.

PLoS One. 2011;6(12):e28810. doi: 10.1371/journal.pone.0028810. Epub 2011 Dec 12.

3.

Diversity in the complexity of phosphate starvation transcriptomes among rice cultivars based on RNA-Seq profiles.

Oono Y, Kawahara Y, Yazawa T, Kanamori H, Kuramata M, Yamagata H, Hosokawa S, Minami H, Ishikawa S, Wu J, Antonio B, Handa H, Itoh T, Matsumoto T.

Plant Mol Biol. 2013 Dec;83(6):523-37. doi: 10.1007/s11103-013-0106-4. Epub 2013 Jul 16.

4.

Organ-specific phosphorus-allocation patterns and transcript profiles linked to phosphorus efficiency in two contrasting wheat genotypes.

Aziz T, Finnegan PM, Lambers H, Jost R.

Plant Cell Environ. 2014 Apr;37(4):943-60. doi: 10.1111/pce.12210. Epub 2013 Nov 5.

5.

Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley.

Huang CY, Shirley N, Genc Y, Shi B, Langridge P.

Plant Physiol. 2011 Jul;156(3):1217-29. doi: 10.1104/pp.111.178459. Epub 2011 May 23.

6.

Harnessing Next Generation Sequencing in Climate Change: RNA-Seq Analysis of Heat Stress-Responsive Genes in Wheat (Triticum aestivum L.).

Kumar RR, Goswami S, Sharma SK, Kala YK, Rai GK, Mishra DC, Grover M, Singh GP, Pathak H, Rai A, Chinnusamy V, Rai RD.

OMICS. 2015 Oct;19(10):632-47. doi: 10.1089/omi.2015.0097. Epub 2015 Sep 25.

7.

Gene expression analysis in the roots of salt-stressed wheat and the cytogenetic derivatives of wheat combined with the salt-tolerant wheatgrass, Lophopyrum elongatum.

Hussein Z, Dryanova A, Maret D, Gulick PJ.

Plant Cell Rep. 2014 Jan;33(1):189-201. doi: 10.1007/s00299-013-1522-2. Epub 2013 Oct 19.

PMID:
24141639
8.

TabHLH1, a bHLH-type transcription factor gene in wheat, improves plant tolerance to Pi and N deprivation via regulation of nutrient transporter gene transcription and ROS homeostasis.

Yang T, Hao L, Yao S, Zhao Y, Lu W, Xiao K.

Plant Physiol Biochem. 2016 Jul;104:99-113. doi: 10.1016/j.plaphy.2016.03.023. Epub 2016 Mar 18.

PMID:
27107183
9.

Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea.

Bhardwaj AR, Joshi G, Kukreja B, Malik V, Arora P, Pandey R, Shukla RN, Bankar KG, Katiyar-Agarwal S, Goel S, Jagannath A, Kumar A, Agarwal M.

BMC Plant Biol. 2015 Jan 21;15:9. doi: 10.1186/s12870-014-0405-1.

10.
11.

Analysis of wheat microspore embryogenesis induction by transcriptome and small RNA sequencing using the highly responsive cultivar "Svilena".

Seifert F, Bössow S, Kumlehn J, Gnad H, Scholten S.

BMC Plant Biol. 2016 Apr 21;16:97. doi: 10.1186/s12870-016-0782-8.

12.

Differential regulation of alanine aminotransferase homologues by abiotic stresses in wheat (Triticum aestivum L.) seedlings.

Kendziorek M, Paszkowski A, Zagdańska B.

Plant Cell Rep. 2012 Jun;31(6):1105-17. doi: 10.1007/s00299-012-1231-2. Epub 2012 Feb 12.

13.

Toward deciphering the genome-wide transcriptional responses of rice to phosphate starvation and recovery.

Secco D, Whelan J.

Plant Signal Behav. 2014;9(4):e28319. doi: 10.4161/psb.28319.

PMID:
25764427
14.

Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.).

Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q.

BMC Plant Biol. 2015 Jun 20;15:152. doi: 10.1186/s12870-015-0511-8.

15.

Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.

Kumar D, Dutta S, Singh D, Prabhu KV, Kumar M, Mukhopadhyay K.

Planta. 2017 Jan;245(1):161-182. doi: 10.1007/s00425-016-2600-9. Epub 2016 Oct 3.

PMID:
27699487
16.

Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery.

Secco D, Jabnoune M, Walker H, Shou H, Wu P, Poirier Y, Whelan J.

Plant Cell. 2013 Nov;25(11):4285-304. doi: 10.1105/tpc.113.117325. Epub 2013 Nov 18.

17.

Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat.

Muthusamy SK, Dalal M, Chinnusamy V, Bansal KC.

J Plant Physiol. 2017 Apr;211:100-113. doi: 10.1016/j.jplph.2017.01.004. Epub 2017 Jan 22.

PMID:
28178571
18.

Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts.

Bedada G, Westerbergh A, Müller T, Galkin E, Bdolach E, Moshelion M, Fridman E, Schmid KJ.

BMC Genomics. 2014 Nov 19;15:995. doi: 10.1186/1471-2164-15-995.

19.

Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress.

Takahashi F, Tilbrook J, Trittermann C, Berger B, Roy SJ, Seki M, Shinozaki K, Tester M.

PLoS One. 2015 Aug 5;10(8):e0133322. doi: 10.1371/journal.pone.0133322. eCollection 2015.

20.

Supplemental Content

Support Center