Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles.

Chen CJ, Chen DH.

Nanoscale Res Lett. 2013 Feb 5;8(1):57. doi: 10.1186/1556-276X-8-57.

2.

Performance of NIR-Mediated Antibacterial Continuous Flow Microreactors Prepared by Mussel-Inspired Immobilization of Cs0.33WO3 Photothermal Agents.

Kim YK, Kang EB, Kim SM, Park CP, In I, Park SY.

ACS Appl Mater Interfaces. 2017 Jan 25;9(3):3192-3200. doi: 10.1021/acsami.6b16634. Epub 2017 Jan 12.

PMID:
28045245
3.

Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites.

Chala TF, Wu CM, Chou MH, Gebeyehu MB, Cheng KB.

Nanomaterials (Basel). 2017 Jul 22;7(7). pii: E191. doi: 10.3390/nano7070191.

4.

Vancomycin-modified LaB6@SiO2/Fe3O4 composite nanoparticles for near-infrared photothermal ablation of bacteria.

Lai BH, Chen DH.

Acta Biomater. 2013 Jul;9(7):7573-9. doi: 10.1016/j.actbio.2013.03.023. Epub 2013 Mar 25.

PMID:
23535232
5.

LaB6 nanoparticles with carbon-doped silica coating for fluorescence imaging and near-IR photothermal therapy of cancer cells.

Lai BH, Chen DH.

Acta Biomater. 2013 Jul;9(7):7556-63. doi: 10.1016/j.actbio.2013.03.034. Epub 2013 Mar 28.

PMID:
23542555
6.

Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo.

Tian Q, Jiang F, Zou R, Liu Q, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J.

ACS Nano. 2011 Dec 27;5(12):9761-71. doi: 10.1021/nn203293t. Epub 2011 Nov 15.

PMID:
22059851
7.

Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property.

Guo C, Yin S, Huang L, Sato T.

ACS Appl Mater Interfaces. 2011 Jul;3(7):2794-9. doi: 10.1021/am200631e. Epub 2011 Jun 27.

PMID:
21675747
8.

Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells.

Xiao JW, Fan SX, Wang F, Sun LD, Zheng XY, Yan CH.

Nanoscale. 2014 Apr 21;6(8):4345-51. doi: 10.1039/c3nr06843a.

PMID:
24622916
9.

Copper sulfide nanoparticles for photothermal ablation of tumor cells.

Li Y, Lu W, Huang Q, Huang M, Li C, Chen W.

Nanomedicine (Lond). 2010 Oct;5(8):1161-71. doi: 10.2217/nnm.10.85.

PMID:
21039194
10.

Self-assembled WO3-x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser.

Li B, Zhang Y, Zou R, Wang Q, Zhang B, An L, Yin F, Hua Y, Hu J.

Dalton Trans. 2014 Apr 28;43(16):6244-50. doi: 10.1039/c3dt53396d.

PMID:
24598863
11.

Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells.

Li B, Wang Q, Zou R, Liu X, Xu K, Li W, Hu J.

Nanoscale. 2014 Mar 21;6(6):3274-82. doi: 10.1039/c3nr06242b. Epub 2014 Feb 7.

PMID:
24509646
12.

Water-soluble germanium(0) nanocrystals: cell recognition and near-infrared photothermal conversion properties.

Lambert TN, Andrews NL, Gerung H, Boyle TJ, Oliver JM, Wilson BS, Han SM.

Small. 2007 Apr;3(4):691-9.

PMID:
17299826
13.

NIR photothermal therapy using polyaniline nanoparticles.

Zhou J, Lu Z, Zhu X, Wang X, Liao Y, Ma Z, Li F.

Biomaterials. 2013 Dec;34(37):9584-92. doi: 10.1016/j.biomaterials.2013.08.075. Epub 2013 Sep 14.

PMID:
24044996
14.

Synthesis of WS2 Nanowires as Efficient 808 nm-Laser-Driven Photothermal Nanoagents.

Macharia DK, Yu N, Zhong R, Xiao Z, Yang J, Chen Z.

J Nanosci Nanotechnol. 2016 Jun;16(6):5865-8.

PMID:
27427645
15.

Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy.

Liu X, Li B, Fu F, Xu K, Zou R, Wang Q, Zhang B, Chen Z, Hu J.

Dalton Trans. 2014 Aug 14;43(30):11709-15. doi: 10.1039/c4dt00424h. Epub 2014 Jun 20.

PMID:
24950757
16.

Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties.

Guo C, Yin S, Yan M, Kobayashi M, Kakihana M, Sato T.

Inorg Chem. 2012 Apr 16;51(8):4763-71. doi: 10.1021/ic300049j. Epub 2012 Mar 23.

PMID:
22443484
17.

Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy.

Chen M, Fang X, Tang S, Zheng N.

Chem Commun (Camb). 2012 Sep 14;48(71):8934-6. doi: 10.1039/c2cc34463g. Epub 2012 Jul 31.

PMID:
22847451
18.

Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer.

Lim CK, Shin J, Lee YD, Kim J, Oh KS, Yuk SH, Jeong SY, Kwon IC, Kim S.

Theranostics. 2012;2(9):871-9. doi: 10.7150/thno.4133. Epub 2012 Sep 20.

19.

Porous Pt Nanoparticles with High Near-Infrared Photothermal Conversion Efficiencies for Photothermal Therapy.

Zhu XM, Wan HY, Jia H, Liu L, Wang J.

Adv Healthc Mater. 2016 Dec;5(24):3165-3172. doi: 10.1002/adhm.201601058. Epub 2016 Nov 17.

PMID:
27860435
20.

Black hollow silicon oxide nanoparticles as highly efficient photothermal agents in the second near-infrared window for in vivo cancer therapy.

Yu X, Yang K, Chen X, Li W.

Biomaterials. 2017 Oct;143:120-129. doi: 10.1016/j.biomaterials.2017.07.037. Epub 2017 Aug 1.

PMID:
28787664

Supplemental Content

Support Center