Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Canine intra-articular multipotent stromal cells (MSC) from adipose tissue have the highest in vitro expansion rates, multipotentiality, and MSC immunophenotypes.

Zhang N, Dietrich MA, Lopez MJ.

Vet Surg. 2013 Feb;42(2):137-46. doi: 10.1111/j.1532-950X.2013.01091.x. Epub 2013 Feb 1.

PMID:
23373667
2.

Therapeutic doses of multipotent stromal cells from minimal adipose tissue.

Zhang N, Dietrich MA, Lopez MJ.

Stem Cell Rev. 2014 Aug;10(4):600-11. doi: 10.1007/s12015-014-9508-1.

3.

Isolation and expansion of synovial CD34(-)CD44(+)CD90(+) mesenchymal stem cells: comparison of an enzymatic method and a direct explant technique.

Lee DH, Joo SD, Han SB, Im J, Lee SH, Sonn CH, Lee KM.

Connect Tissue Res. 2011 Jun;52(3):226-34. doi: 10.3109/03008207.2010.516850. Epub 2010 Nov 30.

PMID:
21117906
4.

In vitro expansion and differentiation of fresh and revitalized adult canine bone marrow-derived and adipose tissue-derived stromal cells.

Spencer ND, Chun R, Vidal MA, Gimble JM, Lopez MJ.

Vet J. 2012 Feb;191(2):231-9. doi: 10.1016/j.tvjl.2010.12.030. Epub 2011 Feb 10.

5.

Effects of Cryopreservation on Canine Multipotent Stromal Cells from Subcutaneous and Infrapatellar Adipose Tissue.

Duan W, Lopez MJ.

Stem Cell Rev. 2016 Apr;12(2):257-68. doi: 10.1007/s12015-015-9634-4.

6.

Adipogenic differentiation potential of rat adipose tissue-derived subpopulations of stromal cells.

Gierloff M, Petersen L, Oberg HH, Quabius ES, Wiltfang J, Açil Y.

J Plast Reconstr Aesthet Surg. 2014 Oct;67(10):1427-35. doi: 10.1016/j.bjps.2014.05.042. Epub 2014 May 29.

PMID:
24947082
7.

In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold.

Xie L, Zhang N, Marsano A, Vunjak-Novakovic G, Zhang Y, Lopez MJ.

Stem Cell Rev. 2013 Dec;9(6):858-72. doi: 10.1007/s12015-013-9456-1.

8.

Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue.

Ranera B, Lyahyai J, Romero A, Vázquez FJ, Remacha AR, Bernal ML, Zaragoza P, Rodellar C, Martín-Burriel I.

Vet Immunol Immunopathol. 2011 Nov 15;144(1-2):147-54. doi: 10.1016/j.vetimm.2011.06.033. Epub 2011 Jul 2.

PMID:
21782255
9.

Impaired expansion and multipotentiality of adult stromal cells in a rat chronic alcohol abuse model.

Huff NK, Spencer ND, Gimble JM, Bagby GJ, Nelson S, Lopez MJ.

Alcohol. 2011 Jun;45(4):393-402. doi: 10.1016/j.alcohol.2010.12.005. Epub 2011 Mar 4.

10.

Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum.

Kisiel AH, McDuffee LA, Masaoud E, Bailey TR, Esparza Gonzalez BP, Nino-Fong R.

Am J Vet Res. 2012 Aug;73(8):1305-17. doi: 10.2460/ajvr.73.8.1305.

PMID:
22849692
11.

Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers.

Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM.

Stem Cells. 2006 Feb;24(2):376-85. Epub 2005 Dec 1.

12.

Human CD34/CD90 ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries.

De Francesco F, Tirino V, Desiderio V, Ferraro G, D'Andrea F, Giuliano M, Libondi G, Pirozzi G, De Rosa A, Papaccio G.

PLoS One. 2009 Aug 6;4(8):e6537. doi: 10.1371/journal.pone.0006537.

13.

An alternative method for the isolation of mesenchymal stromal cells derived from lipoaspirate samples.

Baptista LS, do Amaral RJ, Carias RB, Aniceto M, Claudio-da-Silva C, Borojevic R.

Cytotherapy. 2009;11(6):706-15. doi: 10.3109/14653240902981144.

PMID:
19878057
14.

Surface protein characterization of human adipose tissue-derived stromal cells.

Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM.

J Cell Physiol. 2001 Oct;189(1):54-63.

PMID:
11573204
15.

Human breast milk is a rich source of multipotent mesenchymal stem cells.

Patki S, Kadam S, Chandra V, Bhonde R.

Hum Cell. 2010 May;23(2):35-40. doi: 10.1111/j.1749-0774.2010.00083.x.

PMID:
20712706
16.

Generation of bovine (Bos indicus) and buffalo (Bubalus bubalis) adipose tissue derived stem cells: isolation, characterization, and multipotentiality.

Sampaio RV, Chiaratti MR, Santos DC, Bressan FF, Sangalli JR, Sá AL, Silva TV, Costa NN, Cordeiro MS, Santos SS, Ambrosio CE, Adona PR, Meirelles FV, Miranda MS, Ohashi OM.

Genet Mol Res. 2015 Jan 15;14(1):53-62. doi: 10.4238/2015.January.15.7.

17.

Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E.

Cytotherapy. 2006;8(4):315-7.

PMID:
16923606
18.

A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells.

Moraes DA, Sibov TT, Pavon LF, Alvim PQ, Bonadio RS, Da Silva JR, Pic-Taylor A, Toledo OA, Marti LC, Azevedo RB, Oliveira DM.

Stem Cell Res Ther. 2016 Jul 28;7(1):97. doi: 10.1186/s13287-016-0359-3.

19.

Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro.

Lindroos B, Boucher S, Chase L, Kuokkanen H, Huhtala H, Haataja R, Vemuri M, Suuronen R, Miettinen S.

Cytotherapy. 2009;11(7):958-72. doi: 10.3109/14653240903233081.

PMID:
19903107
20.

Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes.

Yu G, Wu X, Dietrich MA, Polk P, Scott LK, Ptitsyn AA, Gimble JM.

Cytotherapy. 2010 Jul;12(4):538-46. doi: 10.3109/14653241003649528.

Supplemental Content

Support Center