Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 124

1.

Increased preosteoblast adhesion and osteogenic gene expression on TiO2 nanotubes modified with KRSR.

Sun S, Yu W, Zhang Y, Zhang F.

J Mater Sci Mater Med. 2013 Apr;24(4):1079-91. doi: 10.1007/s10856-013-4869-6.

PMID:
23371766
2.

Increased osteoblast adhesion on nanograined Ti modified with KRSR.

Balasundaram G, Webster TJ.

J Biomed Mater Res A. 2007 Mar 1;80(3):602-11.

PMID:
17031820
3.

RGD peptide immobilized on TiO2 nanotubes for increased bone marrow stromal cells adhesion and osteogenic gene expression.

Cao X, Yu WQ, Qiu J, Zhao YF, Zhang YL, Zhang FQ.

J Mater Sci Mater Med. 2012 Feb;23(2):527-36. doi: 10.1007/s10856-011-4479-0.

PMID:
22143905
4.

The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation.

Yu WQ, Jiang XQ, Zhang FQ, Xu L.

J Biomed Mater Res A. 2010 Sep 15;94(4):1012-22. doi: 10.1002/jbm.a.32687.

PMID:
20694968
5.

The effect of Ti anodized nano-foveolae structure on preosteoblast growth and osteogenic gene expression.

Yu WQ, Xu L, Zhang FQ.

J Nanosci Nanotechnol. 2014 Jun;14(6):4387-93.

PMID:
24738401
6.

The roles of extracellular signal-regulated kinase 1/2 pathway in regulating osteogenic differentiation of murine preosteoblasts MC3T3-E1 cells on roughened titanium surfaces.

Zhuang LF, Jiang HH, Qiao SC, Appert C, Si MS, Gu YX, Lai HC.

J Biomed Mater Res A. 2012 Jan;100(1):125-33. doi: 10.1002/jbm.a.33247.

PMID:
21997903
7.

Evaluation of Osteoblast-Like Cell Viability and Differentiation on the Gly-Arg-Gly-Asp-Ser Peptide Immobilized Titanium Dioxide Nanotube via Chemical Grafting.

Kim GH, Kim IS, Park SW, Lee K, Yun KD, Kim HS, Oh GJ, Ji MK, Lim HP.

J Nanosci Nanotechnol. 2016 Feb;16(2):1396-9.

PMID:
27433593
8.

In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes.

Yu WQ, Zhang YL, Jiang XQ, Zhang FQ.

Oral Dis. 2010 Oct;16(7):624-30. doi: 10.1111/j.1601-0825.2009.01643.x.

PMID:
20604877
9.

Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants.

Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmén A, Ellingsen JE.

Biomaterials. 2006 Feb;27(6):926-36.

PMID:
16112191
10.

Molecular plasma deposited peptides on anodized nanotubular titanium: an osteoblast density study.

Balasundaram G, Shimpi TM, Sanow WR, Storey DM, Kitchell BS, Webster TJ.

J Biomed Mater Res A. 2011 Aug;98(2):192-200. doi: 10.1002/jbm.a.33105.

PMID:
21548070
11.

Tuning cell adhesion on titanium with osteogenic rosette nanotubes.

Zhang L, Hemraz UD, Fenniri H, Webster TJ.

J Biomed Mater Res A. 2010 Nov;95(2):550-63. doi: 10.1002/jbm.a.32832.

12.

Comparison of the response of cultured osteoblasts and osteoblasts outgrown from rat calvarial bone chips to nonfouling KRSR and FHRRIKA-peptide modified rough titanium surfaces.

Schuler M, Hamilton DW, Kunzler TP, Sprecher CM, de Wild M, Brunette DM, Textor M, Tosatti SG.

J Biomed Mater Res B Appl Biomater. 2009 Nov;91(2):517-27. doi: 10.1002/jbm.b.31425.

PMID:
19582855
13.

Microarray-based bioinformatics analysis of osteoblasts on TiO2 nanotube layers.

Yu W, Zhang Y, Xu L, Sun S, Jiang X, Zhang F.

Colloids Surf B Biointerfaces. 2012 May 1;93:135-42. doi: 10.1016/j.colsurfb.2011.12.025.

PMID:
22261177
14.

TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion.

Balasundaram G, Yao C, Webster TJ.

J Biomed Mater Res A. 2008 Feb;84(2):447-53.

PMID:
17618492
15.

[Effect of diameter-controlled Ti-TiO2 nanotubes on the adhesion of osteoblast and fibroblast].

Li HC, Zhang YM, Sun HP.

Zhonghua Kou Qiang Yi Xue Za Zhi. 2012 Feb;47(2):122-6. doi: 10.3760/cma.j.issn.1002-0098.2012.02.014. Chinese.

PMID:
22490253
16.

Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion.

Peng Z, Ni J, Zheng K, Shen Y, Wang X, He G, Jin S, Tang T.

Int J Nanomedicine. 2013;8:3093-105. doi: 10.2147/IJN.S48084.

17.

The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo.

Guo J, Padilla RJ, Ambrose W, De Kok IJ, Cooper LF.

Biomaterials. 2007 Dec;28(36):5418-25.

PMID:
17868850
18.

The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2 expression in vivo.

von Wilmowsky C, Bauer S, Roedl S, Neukam FW, Schmuki P, Schlegel KA.

Clin Oral Implants Res. 2012 Mar;23(3):359-66. doi: 10.1111/j.1600-0501.2010.02139.x.

PMID:
21443609
19.

Effects of TiO2 nanotube layers on RAW 264.7 macrophage behaviour and bone morphogenetic protein-2 expression.

Sun SJ, Yu WQ, Zhang YL, Jiang XQ, Zhang FQ.

Cell Prolif. 2013 Dec;46(6):685-94. doi: 10.1111/cpr.12072.

PMID:
24460720
20.

Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

Seo HY, Kwon JS, Choi YR, Kim KM, Choi EH, Kim KN.

PLoS One. 2014 Nov 24;9(11):e113477. doi: 10.1371/journal.pone.0113477.

Supplemental Content

Support Center