Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

Use of secondary-treated wastewater for the production of Muriellopsis sp.

Gómez C, Escudero R, Morales MM, Figueroa FL, Fernández-Sevilla JM, Acién FG.

Appl Microbiol Biotechnol. 2013 Mar;97(5):2239-49. doi: 10.1007/s00253-012-4634-7. Epub 2013 Jan 31.

PMID:
23371293
2.

Utilization of secondary-treated wastewater for the production of freshwater microalgae.

Gómez-Serrano C, Morales-Amaral MM, Acién FG, Escudero R, Fernández-Sevilla JM, Molina-Grima E.

Appl Microbiol Biotechnol. 2015 Aug;99(16):6931-44. doi: 10.1007/s00253-015-6694-y. Epub 2015 Jun 3.

PMID:
26036706
3.

Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I.

Samorì G, Samorì C, Guerrini F, Pistocchi R.

Water Res. 2013 Feb 1;47(2):791-801. doi: 10.1016/j.watres.2012.11.006. Epub 2012 Nov 16.

PMID:
23211134
4.

Evaluation of growth, nutrient utilization and production of bioproducts by a wastewater-isolated microalga.

Frampton DM, Gurney RH, Dunstan GA, Clementson LA, Toifl MC, Pollard CB, Burn S, Jameson ID, Blackburn SI.

Bioresour Technol. 2013 Feb;130:261-8. doi: 10.1016/j.biortech.2012.12.001. Epub 2012 Dec 12.

PMID:
23313670
5.

Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent.

Wang B, Lan CQ.

Bioresour Technol. 2011 May;102(10):5639-44. doi: 10.1016/j.biortech.2011.02.054. Epub 2011 Feb 17.

PMID:
21420294
6.

Algal production in wastewater treatment high rate algal ponds for potential biofuel use.

Park JB, Craggs RJ.

Water Sci Technol. 2011;63(10):2403-10.

PMID:
21977667
7.

Upflow anaerobic sludge blanket reactor--a review.

Bal AS, Dhagat NN.

Indian J Environ Health. 2001 Apr;43(2):1-82. Review.

PMID:
12397675
8.

Blending water- and nutrient-source wastewaters for cost-effective cultivation of high lipid content microalgal species Micractinium inermum NLP-F014.

Park S, Kim J, Yoon Y, Park Y, Lee T.

Bioresour Technol. 2015 Dec;198:388-94. doi: 10.1016/j.biortech.2015.09.038. Epub 2015 Sep 18.

PMID:
26409109
9.

Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm.

Michels MH, Vaskoska M, Vermuë MH, Wijffels RH.

Water Res. 2014 Nov 15;65:290-6. doi: 10.1016/j.watres.2014.07.017. Epub 2014 Jul 19.

PMID:
25150516
10.

Effect of mine wastewater on nutrient removal and lipid production by a green microalga Micratinium reisseri from concentrated municipal wastewater.

Ji MK, Kabra AN, Salama el-S, Roh HS, Kim JR, Lee DS, Jeon BH.

Bioresour Technol. 2014 Apr;157:84-90. doi: 10.1016/j.biortech.2014.01.087. Epub 2014 Jan 30.

PMID:
24534788
11.

The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources.

Ramanna L, Guldhe A, Rawat I, Bux F.

Bioresour Technol. 2014 Sep;168:127-35. doi: 10.1016/j.biortech.2014.03.064. Epub 2014 Mar 27.

PMID:
24768415
12.

The feasibility of biodiesel production by microalgae using industrial wastewater.

Wu LF, Chen PC, Huang AP, Lee CM.

Bioresour Technol. 2012 Jun;113:14-8. doi: 10.1016/j.biortech.2011.12.128. Epub 2012 Jan 2.

PMID:
22269054
13.

Aerated swine lagoon wastewater: a promising alternative medium for Botryococcus braunii cultivation in open system.

Liu J, Ge Y, Cheng H, Wu L, Tian G.

Bioresour Technol. 2013 Jul;139:190-4. doi: 10.1016/j.biortech.2013.04.036. Epub 2013 Apr 17.

PMID:
23660382
14.

Microalgal cultivation in wastewater from the fermentation effluent in Riboflavin (B2) manufacturing for biodiesel production.

Sun X, Wang C, Li Z, Wang W, Tong Y, Wei J.

Bioresour Technol. 2013 Sep;143:499-504. doi: 10.1016/j.biortech.2013.06.044. Epub 2013 Jun 19.

PMID:
23831749
15.

Optimization of culture conditions and comparison of biomass productivity of three green algae.

Kim W, Park JM, Gim GH, Jeong SH, Kang CM, Kim DJ, Kim SW.

Bioprocess Biosyst Eng. 2012 Jan;35(1-2):19-27. doi: 10.1007/s00449-011-0612-1. Epub 2011 Sep 10.

PMID:
21909669
16.

Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds.

Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG.

Appl Microbiol Biotechnol. 2007 Jan;73(6):1259-66. Epub 2006 Oct 11.

PMID:
17033775
17.

Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata.

Fakas S, Papanikolaou S, Galiotou-Panayotou M, Komaitis M, Aggelis G.

J Appl Microbiol. 2008 Oct;105(4):1062-70. doi: 10.1111/j.1365-2672.2008.03839.x. Epub 2008 May 16.

18.

Research on microbial lipid production from potato starch wastewater as culture medium by Lipomyces starkeyi.

Liu JX, Yue QY, Gao BY, Wang Y, Li Q, Zhang PD.

Water Sci Technol. 2013;67(8):1802-8. doi: 10.2166/wst.2013.059.

PMID:
23579836
19.

Removing constraints on the biomass production of freshwater macroalgae by manipulating water exchange to manage nutrient flux.

Cole AJ, de Nys R, Paul NA.

PLoS One. 2014 Jul 7;9(7):e101284. doi: 10.1371/journal.pone.0101284. eCollection 2014.

20.

Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta).

Del Campo JA, Moreno J, Rodríguez H, Vargas MA, Rivas J, Guerrero MG.

J Biotechnol. 2000 Jan 7;76(1):51-9.

PMID:
10784296

Supplemental Content

Support Center