Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Using fundamental measure theory to treat the correlation function of the inhomogeneous hard-sphere fluid.

Schulte JB, Kreitzberg PA, Haglund CV, Roundy D.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):061201. Epub 2012 Dec 28.

PMID:
23367925
2.

Weighted correlation approach: an extended version with applications to the hard-sphere fluid.

Wang Z, Liu L.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 1):031115. Epub 2012 Sep 11.

PMID:
23030874
3.
4.

Density functional theory for hard-sphere mixtures: the White Bear version mark II.

Hansen-Goos H, Roth R.

J Phys Condens Matter. 2006 Sep 20;18(37):8413-25. doi: 10.1088/0953-8984/18/37/002. Epub 2006 Aug 24.

PMID:
21690897
6.

Fundamental measure theory for inhomogeneous fluids of nonspherical hard particles.

Hansen-Goos H, Mecke K.

Phys Rev Lett. 2009 Jan 9;102(1):018302. Epub 2009 Jan 7.

PMID:
19257246
7.

Density functional theory for the description of spherical non-associating monomers in confined media using the SAFT-VR equation of state and weighted density approximations.

Malheiro C, Mendiboure B, Plantier F, Blas FJ, Miqueu C.

J Chem Phys. 2014 Apr 7;140(13):134707. doi: 10.1063/1.4869996.

PMID:
24712808
8.

Modeling diffusion in colloidal suspensions by dynamical density functional theory using fundamental measure theory of hard spheres.

Stopper D, Marolt K, Roth R, Hansen-Goos H.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022151. Epub 2015 Aug 31.

PMID:
26382387
9.

Free energies, vacancy concentrations, and density distribution anisotropies in hard-sphere crystals: a combined density functional and simulation study.

Oettel M, Görig S, Härtel A, Löwen H, Radu M, Schilling T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051404. Epub 2010 Nov 15.

PMID:
21230476
10.
11.

The weighted correlation approach for density functional theory: a study on the structure of the electric double layer.

Wang Z, Liu L, Neretnieks I.

J Phys Condens Matter. 2011 May 4;23(17):175002. doi: 10.1088/0953-8984/23/17/175002. Epub 2011 Apr 12.

PMID:
21483081
12.

A fundamental measure theory for the sticky hard sphere fluid.

Hansen-Goos H, Wettlaufer JS.

J Chem Phys. 2011 Jan 7;134(1):014506. doi: 10.1063/1.3528226.

PMID:
21219006
13.

Fundamental measure density functional theory for nonadditive hard-core mixtures: the one-dimensional case.

Schmidt M.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031202. Epub 2007 Sep 17.

PMID:
17930234
14.

Anisotropic pair correlations in binary and multicomponent hard-sphere mixtures in the vicinity of a hard wall: A combined density functional theory and simulation study.

Härtel A, Kohl M, Schmiedeberg M.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042310. doi: 10.1103/PhysRevE.92.042310. Epub 2015 Oct 16.

PMID:
26565243
15.

Improved association in a classical density functional theory for water.

Krebs EJ, Schulte JB, Roundy D.

J Chem Phys. 2014 Mar 28;140(12):124507. doi: 10.1063/1.4869597.

PMID:
24697459
16.

Surface tension of isotropic-nematic interfaces: fundamental measure theory for hard spherocylinders.

Wittmann R, Mecke K.

J Chem Phys. 2014 Mar 14;140(10):104703. doi: 10.1063/1.4867277.

PMID:
24628192
17.

Calculation of the interfacial free energy of a binary hard-sphere fluid at a planar hard wall.

Kern JL, Laird BB.

J Chem Phys. 2014 Jan 14;140(2):024703. doi: 10.1063/1.4858433.

PMID:
24437898
18.

Inhomogeneous fluids of colloidal hard dumbbells: fundamental measure theory and Monte Carlo simulations.

Marechal M, Goetzke HH, Härtel A, Löwen H.

J Chem Phys. 2011 Dec 21;135(23):234510. doi: 10.1063/1.3664742.

PMID:
22191889
19.

Fundamental measure theory for the inhomogeneous hard-sphere system based on Santos' consistent free energy.

Hansen-Goos H, Mortazavifar M, Oettel M, Roth R.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052121. Epub 2015 May 14.

PMID:
26066133
20.

A hybrid perturbed-chain SAFT density functional theory for representing fluid behavior in nanopores: mixtures.

Shen G, Ji X, Öberg S, Lu X.

J Chem Phys. 2013 Nov 21;139(19):194705. doi: 10.1063/1.4825078.

PMID:
24320342

Supplemental Content

Support Center