Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 173

1.

A comparison of direct and pattern recognition control for a two degree-of-freedom above elbow virtual prosthesis.

Toledo C, Simon A, Muñoz R, Vera A, Leija L, Hargrove L.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4332-5. doi: 10.1109/EMBC.2012.6346925.

PMID:
23366886
2.

Performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.

Tkach DC, Young AJ, Smith LH, Hargrove LJ.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4319-23. doi: 10.1109/EMBC.2012.6346922.

PMID:
23366883
3.

Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.

Tkach DC, Young AJ, Smith LH, Rouse EJ, Hargrove LJ.

IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):727-34. doi: 10.1109/TNSRE.2014.2302799. Epub 2014 Feb 11.

PMID:
24760931
4.

High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.

Daley H, Englehart K, Hargrove L, Kuruganti U.

J Electromyogr Kinesiol. 2012 Jun;22(3):478-84. doi: 10.1016/j.jelekin.2011.12.012. Epub 2012 Jan 24.

PMID:
22269773
5.

A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees.

Amsuess S, Goebel P, Graimann B, Farina D.

IEEE Trans Neural Syst Rehabil Eng. 2015 Sep;23(5):827-36. doi: 10.1109/TNSRE.2014.2361478. Epub 2014 Oct 3.

PMID:
25296406
6.

Myoelectric control of a powered knee prosthesis for volitional movement during non-weight-bearing activities.

Ha KH, Varol HA, Goldfarb M.

Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3515-8. doi: 10.1109/IEMBS.2010.5627736.

PMID:
21097034
7.

Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation.

Vidovic MM, Hwang HJ, Amsuss S, Hahne JM, Farina D, Muller KR.

IEEE Trans Neural Syst Rehabil Eng. 2016 Sep;24(9):961-970. doi: 10.1109/TNSRE.2015.2492619. Epub 2015 Oct 26.

PMID:
26513794
8.

Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.

Young AJ, Kuiken TA, Hargrove LJ.

J Neural Eng. 2014 Oct;11(5):056021. doi: 10.1088/1741-2560/11/5/056021. Epub 2014 Sep 22.

PMID:
25242111
9.

Myoelectric walking mode classification for transtibial amputees.

Miller JD, Beazer MS, Hahn ME.

IEEE Trans Biomed Eng. 2013 Oct;60(10):2745-50. doi: 10.1109/TBME.2013.2264466. Epub 2013 May 21.

PMID:
23708765
10.
11.

Improving the Performance Against Force Variation of EMG Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees.

Al-Timemy AH, Khushaba RN, Bugmann G, Escudero J.

IEEE Trans Neural Syst Rehabil Eng. 2016 Jun;24(6):650-61. doi: 10.1109/TNSRE.2015.2445634. Epub 2015 Jun 23.

PMID:
26111399
12.

Pattern recognition control outperforms conventional myoelectric control in upper limb patients with targeted muscle reinnervation.

Hargrove LJ, Lock BA, Simon AM.

Conf Proc IEEE Eng Med Biol Soc. 2013;2013:1599-602. doi: 10.1109/EMBC.2013.6609821.

PMID:
24110008
13.

Motion Normalized Proportional Control for Improved Pattern Recognition-Based Myoelectric Control.

Scheme E, Lock B, Hargrove L, Hill W, Kuruganti U, Englehart K.

IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):149-57. doi: 10.1109/TNSRE.2013.2247421. Epub 2013 Mar 7.

PMID:
23475378
14.

Support vector regression for improved real-time, simultaneous myoelectric control.

Ameri A, Kamavuako EN, Scheme EJ, Englehart KB, Parker PA.

IEEE Trans Neural Syst Rehabil Eng. 2014 Nov;22(6):1198-209. doi: 10.1109/TNSRE.2014.2323576. Epub 2014 May 16.

PMID:
24846649
15.

Fractal and twin SVM-based handgrip recognition for healthy subjects and trans-radial amputees using myoelectric signal.

Arjunan SP, Kumar DK, Jayadeva J.

Biomed Tech (Berl). 2016 Feb;61(1):87-94. doi: 10.1515/bmt-2014-0134.

PMID:
26354833
16.

Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering.

Naik GR, Al-Timemy AH, Nguyen HT.

IEEE Trans Neural Syst Rehabil Eng. 2016 Aug;24(8):837-46. doi: 10.1109/TNSRE.2015.2478138. Epub 2015 Sep 17.

PMID:
26394431
17.

Functional Assessment of a Myoelectric Postural Controller and Multi-Functional Prosthetic Hand by Persons With Trans-Radial Limb Loss.

Segil JL, Huddle SA, Weir RFF.

IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):618-627. doi: 10.1109/TNSRE.2016.2586846. Epub 2016 Jun 30.

PMID:
27390181
18.

A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements.

Young AJ, Smith LH, Rouse EJ, Hargrove LJ.

J Neuroeng Rehabil. 2014 Jan 10;11:5. doi: 10.1186/1743-0003-11-5.

19.

Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms.

Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB.

JAMA. 2009 Feb 11;301(6):619-28. doi: 10.1001/jama.2009.116.

20.

A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.

Li X, Samuel OW, Zhang X, Wang H, Fang P, Li G.

J Neuroeng Rehabil. 2017 Jan 7;14(1):2. doi: 10.1186/s12984-016-0212-z.

Supplemental Content

Support Center