Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Threshold analysis of a quasimonopolar stimulation paradigm in visual prosthesis.

Matteucci PB, Chen SC, Dodds C, DokosNigel S, Lovell H, Suaning GJ.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2997-3000. doi: 10.1109/EMBC.2012.6346594.

PMID:
23366555
2.

Current steering in retinal stimulation via a quasimonopolar stimulation paradigm.

Matteucci PB, Chen SC, Tsai D, Dodds CW, Dokos S, Morley JW, Lovell NH, Suaning GJ.

Invest Ophthalmol Vis Sci. 2013 Jun 21;54(6):4307-20. doi: 10.1167/iovs.13-11653.

PMID:
23661370
3.

Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration.

Habib AG, Cameron MA, Suaning GJ, Lovell NH, Morley JW.

J Neural Eng. 2013 Jun;10(3):036013. doi: 10.1088/1741-2560/10/3/036013.

PMID:
23612906
4.

Quasi-monopolar electrical stimulation of the retina: a computational modelling study.

Abramian M, Lovell NH, Habib A, Morley JW, Suaning GJ, Dokos S.

J Neural Eng. 2014 Apr;11(2):025002. doi: 10.1088/1741-2560/11/2/025002.

PMID:
24556561
5.

Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis.

Villalobos J, Fallon JB, Nayagam DA, Shivdasani MN, Luu CD, Allen PJ, Shepherd RK, Williams CE.

J Neural Eng. 2014 Aug;11(4):046017. doi: 10.1088/1741-2560/11/4/046017.

PMID:
24965866
6.

Efficacy of the hexpolar configuration in localizing the activation of retinal ganglion cells under electrical stimulation.

Habib AG, Cameron MA, Suaning GJ, Lovell NH, Morley JW.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2776-9. doi: 10.1109/EMBC.2012.6346540.

PMID:
23366501
7.

Visual cortex responses to single- and simultaneous multiple-electrode stimulation of the retina: implications for retinal prostheses.

Shivdasani MN, Fallon JB, Luu CD, Cicione R, Allen PJ, Morley JW, Williams CE.

Invest Ophthalmol Vis Sci. 2012 Sep 19;53(10):6291-300.

PMID:
22899754
8.

Factors affecting perceptual thresholds in a suprachoroidal retinal prosthesis.

Shivdasani MN, Sinclair NC, Dimitrov PN, Varsamidis M, Ayton LN, Luu CD, Perera T, McDermott HJ, Blamey PJ; Bionic Vision Australia Consortium..

Invest Ophthalmol Vis Sci. 2014 Sep 9;55(10):6467-81. doi: 10.1167/iovs.14-14396.

PMID:
25205858
9.

Performance optimization of current focusing and virtual electrode strategies in retinal implants.

Khalili Moghaddam G, Lovell NH, Wilke RG, Suaning GJ, Dokos S.

Comput Methods Programs Biomed. 2014 Nov;117(2):334-42. doi: 10.1016/j.cmpb.2014.06.012.

PMID:
25023532
10.

Focal activation of the feline retina via a suprachoroidal electrode array.

Wong YT, Chen SC, Seo JM, Morley JW, Lovell NH, Suaning GJ.

Vision Res. 2009 Mar;49(8):825-33. doi: 10.1016/j.visres.2009.02.018.

11.

Quasi-monopolar stimulation: a novel electrode design configuration for performance optimization of a retinal neuroprosthesis.

Khalili Moghadam G, Wilke R, Suaning GJ, Lovell NH, Dokos S.

PLoS One. 2013 Aug 26;8(8):e73130. doi: 10.1371/journal.pone.0073130.

12.

Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration.

Cicione R, Shivdasani MN, Fallon JB, Luu CD, Allen PJ, Rathbone GD, Shepherd RK, Williams CE.

J Neural Eng. 2012 Jun;9(3):036009. doi: 10.1088/1741-2560/9/3/036009.

PMID:
22595310
13.

Development of an extraocular retinal prosthesis: evaluation of stimulation parameters in the cat.

Chowdhury V, Morley JW, Coroneo MT.

J Clin Neurosci. 2008 Aug;15(8):900-6. doi: 10.1016/j.jocn.2007.08.012.

PMID:
18586497
14.

Efficacy of supra-choroidal, bipolar, electrical stimulation in a vision prosthesis.

Wong YT, Chen SC, Kerdraon YA, Allen PJ, McCombe MF, Morley JW, Lovell NH, Suaning GJ.

Conf Proc IEEE Eng Med Biol Soc. 2008;2008:1789-92. doi: 10.1109/IEMBS.2008.4649525.

PMID:
19163028
15.

Crosstalk current measurements using multi-electrode arrays in saline.

Tran N, Halpern M, Bai S, Skafidas E.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3021-4. doi: 10.1109/EMBC.2012.6346600.

PMID:
23366561
16.

Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants.

Wilke RG, Moghadam GK, Lovell NH, Suaning GJ, Dokos S.

J Neural Eng. 2011 Aug;8(4):046016. doi: 10.1088/1741-2560/8/4/046016.

PMID:
21673395
17.

Simulation of epiretinal prostheses - evaluation of geometrical factors affecting stimulation thresholds.

Kasi H, Hasenkamp W, Cosendai G, Bertsch A, Renaud P.

J Neuroeng Rehabil. 2011 Aug 19;8:44. doi: 10.1186/1743-0003-8-44.

18.

Evaluation of extraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex.

Chowdhury V, Morley JW, Coroneo MT.

J Clin Neurosci. 2005 Jun;12(5):574-9.

PMID:
16051097
19.

3D finite element modeling of epiretinal stimulation: Impact of prosthetic electrode size and distance from the retina.

Sui X, Huang Y, Feng F, Huang C, Chan LL, Wang G.

Int J Artif Organs. 2015 May;38(5):277-87.

PMID:
26044659
20.

Development of a surgical approach for a wide-view suprachoroidal retinal prosthesis: evaluation of implantation trauma.

Villalobos J, Allen PJ, McCombe MF, Ulaganathan M, Zamir E, Ng DC, Shepherd RK, Williams CE.

Graefes Arch Clin Exp Ophthalmol. 2012 Mar;250(3):399-407. doi: 10.1007/s00417-011-1794-6.

PMID:
21874343
Items per page

Supplemental Content

Support Center