Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Control of a time-delayed 5 degrees of freedom arm model for use in upper extremity functional electrical stimulation.

Cooman P, Kirsch RF.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:322-4. doi: 10.1109/EMBC.2012.6345934.

PMID:
23365895
2.

Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.

Giuffrida JP, Crago PE.

IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):147-52.

PMID:
16003892
3.

An optimized proportional-derivative controller for the human upper extremity with gravity.

Jagodnik KM, Blana D, van den Bogert AJ, Kirsch RF.

J Biomech. 2015 Oct 15;48(13):3692-700. doi: 10.1016/j.jbiomech.2015.08.016. Epub 2015 Aug 29.

4.

Multi-muscle FES force control of the human arm for arbitrary goals.

Schearer EM, Liao YW, Perreault EJ, Tresch MC, Memberg WD, Kirsch RF, Lynch KM.

IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):654-63. doi: 10.1109/TNSRE.2013.2282903. Epub 2013 Oct 7.

5.

EMG-based control for a C5/C6 spinal cord injury upper extremity neuroprosthesis.

Hincapie JG, Kirsch RF.

Conf Proc IEEE Eng Med Biol Soc. 2007;2007:2432-5.

PMID:
18002485
6.

A neural tracking and motor control approach to improve rehabilitation of upper limb movements.

Goffredo M, Bernabucci I, Schmid M, Conforto S.

J Neuroeng Rehabil. 2008 Feb 5;5:5. doi: 10.1186/1743-0003-5-5.

7.

Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.

Rohm M, Schneiders M, Müller C, Kreilinger A, Kaiser V, Müller-Putz GR, Rupp R.

Artif Intell Med. 2013 Oct;59(2):133-42. doi: 10.1016/j.artmed.2013.07.004. Epub 2013 Sep 13.

PMID:
24064256
8.

Coordinating Upper and Lower Body During FES-Assisted Transfers in Persons With Spinal Cord Injury in Order to Reduce Arm Support.

Jovic J, Azevedo Coste C, Fraisse P, Henkous S, Fattal C.

Neuromodulation. 2015 Dec;18(8):736-43. doi: 10.1111/ner.12286. Epub 2015 Apr 27.

PMID:
25917248
9.

A neuroprosthesis for control of seated balance after spinal cord injury.

Audu ML, Lombardo LM, Schnellenberger JR, Foglyano KM, Miller ME, Triolo RJ.

J Neuroeng Rehabil. 2015 Jan 21;12:8. doi: 10.1186/1743-0003-12-8.

10.

Novel muscle patterns for reaching after cervical spinal cord injury: a case for motor redundancy.

Koshland GF, Galloway JC, Farley B.

Exp Brain Res. 2005 Jul;164(2):133-47. Epub 2005 Mar 15.

PMID:
16028034
11.

Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.

Blana D, Kirsch RF, Chadwick EK.

Med Biol Eng Comput. 2009 May;47(5):533-42. doi: 10.1007/s11517-009-0479-3. Epub 2009 Apr 3.

12.

Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.

Hincapie JG, Kirsch RF.

IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):80-90. doi: 10.1109/TNSRE.2008.2010480.

13.
14.

Closed-loop control of functional electrical stimulation-assisted arm-free standing in individuals with spinal cord injury: a feasibility study.

Vette AH, Masani K, Kim JY, Popovic MR.

Neuromodulation. 2009 Jan;12(1):22-32. doi: 10.1111/j.1525-1403.2009.00184.x.

PMID:
22151219
15.

Sliding mode closed-loop control of FES: controlling the shank movement.

Jezernik S, Wassink RG, Keller T.

IEEE Trans Biomed Eng. 2004 Feb;51(2):263-72.

PMID:
14765699
16.

Prediction of distal arm joint angles from EMG and shoulder orientation for prosthesis control.

Akhtar A, Hargrove LJ, Bretl T.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4160-3. doi: 10.1109/EMBC.2012.6346883.

PMID:
23366844
17.

Real-time evaluation of a noninvasive neuroprosthetic interface for control of reach.

Corbett EA, Körding KP, Perreault EJ.

IEEE Trans Neural Syst Rehabil Eng. 2013 Jul;21(4):674-83. doi: 10.1109/TNSRE.2013.2251664. Epub 2013 Mar 15.

PMID:
23529107
18.

Real-time fusion of gaze and EMG for a reaching neuroprosthesis.

Corbett EA, Kording KP, Perreault EJ.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:739-42. doi: 10.1109/EMBC.2012.6346037.

PMID:
23365998
19.

Modeling open-loop stability of a human arm driven by a functional electrical stimulation neuroprosthesis.

Liao YW, Schearer EM, Hu X, Perreault EJ, Tresch MC, Lynch KM.

Conf Proc IEEE Eng Med Biol Soc. 2013;2013:3598-601. doi: 10.1109/EMBC.2013.6610321.

PMID:
24110508
20.

Musculoskeletal model-guided, customizable selection of shoulder and elbow muscles for a C5 SCI neuroprosthesis.

Hincapie JG, Blana D, Chadwick EK, Kirsch RF.

IEEE Trans Neural Syst Rehabil Eng. 2008 Jun;16(3):255-63. doi: 10.1109/TNSRE.2008.922681.

Supplemental Content

Support Center