Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

DTI for assessing axonal integrity after contusive spinal cord injury and transplantation of oligodendrocyte progenitor cells.

Bazley FA, Pourmorteza A, Gupta S, Pashai N, Kerr C, All AH.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:82-5. doi: 10.1109/EMBC.2012.6345876.

PMID:
23365837
2.

Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury.

All AH, Bazley FA, Gupta S, Pashai N, Hu C, Pourmorteza A, Kerr C.

PLoS One. 2012;7(10):e47645. doi: 10.1371/journal.pone.0047645. Epub 2012 Oct 16.

4.

Diffusion tensor imaging as a biomarker for assessing neuronal stem cell treatments affecting areas distal to the site of spinal cord injury.

Jirjis MB, Valdez C, Vedantam A, Schmit BD, Kurpad SN.

J Neurosurg Spine. 2017 Feb;26(2):243-251. doi: 10.3171/2016.5.SPINE151319. Epub 2016 Sep 30.

PMID:
27689421
5.

Transplantation of oligodendrocyte precursor cells improves myelination and promotes functional recovery after spinal cord injury.

Wu B, Sun L, Li P, Tian M, Luo Y, Ren X.

Injury. 2012 Jun;43(6):794-801. doi: 10.1016/j.injury.2011.09.013. Epub 2011 Oct 20.

PMID:
22018607
6.

Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury.

Kerr CL, Letzen BS, Hill CM, Agrawal G, Thakor NV, Sterneckert JL, Gearhart JD, All AH.

Int J Neurosci. 2010 Apr;120(4):305-13. doi: 10.3109/00207450903585290.

PMID:
20374080
7.
8.

Longitudinal assessment of white matter pathology in the injured mouse spinal cord through ultra-high field (16.4 T) in vivo diffusion tensor imaging.

Brennan FH, Cowin GJ, Kurniawan ND, Ruitenberg MJ.

Neuroimage. 2013 Nov 15;82:574-85. doi: 10.1016/j.neuroimage.2013.06.019. Epub 2013 Jun 14.

PMID:
23770410
9.

Differentiation of neural precursor cell-derived oligodendrocyte progenitor cells following transplantation into normal and injured spinal cords.

Lü HZ, Wang YX, Zou J, Li Y, Fu SL, Jin JQ, Hu JG, Lu PH.

Differentiation. 2010 Nov-Dec;80(4-5):228-40. doi: 10.1016/j.diff.2010.09.179. Epub 2010 Sep 18.

PMID:
20850923
10.

Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury.

Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS.

Stem Cells. 2010 Jan;28(1):152-63. doi: 10.1002/stem.245.

11.

Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats.

Bazley FA, Maybhate A, Tan CS, Thakor NV, Kerr C, All AH.

IEEE Trans Neural Syst Rehabil Eng. 2014 Sep;22(5):953-64. doi: 10.1109/TNSRE.2014.2319313. Epub 2014 Apr 29.

PMID:
24801738
12.

Platelet-derived growth factor-responsive neural precursors give rise to myelinating oligodendrocytes after transplantation into the spinal cords of contused rats and dysmyelinated mice.

Plemel JR, Chojnacki A, Sparling JS, Liu J, Plunet W, Duncan GJ, Park SE, Weiss S, Tetzlaff W.

Glia. 2011 Dec;59(12):1891-910. doi: 10.1002/glia.21232. Epub 2011 Aug 23.

PMID:
22407783
13.

A controlled spinal cord contusion for the rhesus macaque monkey.

Ma Z, Zhang YP, Liu W, Yan G, Li Y, Shields LBE, Walker M, Chen K, Huang W, Kong M, Lu Y, Brommer B, Chen X, Xu XM, Shields CB.

Exp Neurol. 2016 May;279:261-273. doi: 10.1016/j.expneurol.2016.02.008. Epub 2016 Feb 11.

PMID:
26875994
14.

Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury.

Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O.

J Neurosci. 2005 May 11;25(19):4694-705.

15.

Functional assessment of the acute local and distal transplantation of human neural stem cells after spinal cord injury.

Cheng I, Mayle RE, Cox CA, Park DY, Smith RL, Corcoran-Schwartz I, Ponnusamy KE, Oshtory R, Smuck MW, Mitra R, Kharazi AI, Carragee EJ.

Spine J. 2012 Nov;12(11):1040-4. doi: 10.1016/j.spinee.2012.09.005. Epub 2012 Oct 12.

PMID:
23063425
16.
17.

Efficacy of diffusion tensor anisotropy indices and tractography in assessing the extent of severity of spinal cord injury: an in vitro analytical study in calf spinal cords.

Rajasekaran S, Kanna RM, Shetty AP, Ilayaraja V.

Spine J. 2012 Dec;12(12):1147-53. doi: 10.1016/j.spinee.2012.10.032. Epub 2012 Dec 16.

PMID:
23245938
18.

Transplantation of oligodendrocyte precursor cells improves locomotion deficits in rats with spinal cord irradiation injury.

Sun Y, Xu CC, Li J, Guan XY, Gao L, Ma LX, Li RX, Peng YW, Zhu GP.

PLoS One. 2013;8(2):e57534. doi: 10.1371/journal.pone.0057534. Epub 2013 Feb 27.

19.

Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord.

Yasuda A, Tsuji O, Shibata S, Nori S, Takano M, Kobayashi Y, Takahashi Y, Fujiyoshi K, Hara CM, Miyawaki A, Okano HJ, Toyama Y, Nakamura M, Okano H.

Stem Cells. 2011 Dec;29(12):1983-94. doi: 10.1002/stem.767.

20.

Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury.

Gauthier MK, Kosciuczyk K, Tapley L, Karimi-Abdolrezaee S.

Eur J Neurosci. 2013 Sep;38(5):2693-715. doi: 10.1111/ejn.12268. Epub 2013 Jun 13.

PMID:
23758598

Supplemental Content

Support Center