Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 199

1.

Human Ng2+ adipose stem cells loaded in vivo on a new crosslinked hyaluronic acid-Lys scaffold fabricate a skeletal muscle tissue.

Desiderio V, De Francesco F, Schiraldi C, De Rosa A, La Gatta A, Paino F, d'Aquino R, Ferraro GA, Tirino V, Papaccio G.

J Cell Physiol. 2013 Aug;228(8):1762-73. doi: 10.1002/jcp.24336.

PMID:
23359523
2.

Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues.

Ferraro GA, De Francesco F, Nicoletti G, Paino F, Desiderio V, Tirino V, D'Andrea F.

J Cell Biochem. 2013 May;114(5):1039-49. doi: 10.1002/jcb.24443.

PMID:
23129214
3.

Differentiation potential of human mesenchymal stem cells derived from adipose tissue and bone marrow to sinus node-like cells.

Yang J, Song T, Wu P, Chen Y, Fan X, Chen H, Zhang J, Huang C.

Mol Med Rep. 2012 Jan;5(1):108-13. doi: 10.3892/mmr.2011.611. Epub 2011 Oct 3.

PMID:
21971826
4.

[Expressions of myogenic markers in skeletal muscle differentiation of human bone marrow mesenchymal stem cells].

Liu TY, Dai H, Lin J, Li M, Xiong F, Feng SW, Zhang YN, Zhang C.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2010 Oct;32(5):516-20. doi: 10.3881/j.issn.1000-503X.2010.05.010. Chinese.

5.

Myogenic potential of adipose-tissue-derived cells.

Di Rocco G, Iachininoto MG, Tritarelli A, Straino S, Zacheo A, Germani A, Crea F, Capogrossi MC.

J Cell Sci. 2006 Jul 15;119(Pt 14):2945-52.

6.

Osteogenic differentiation of two distinct subpopulations of human adipose-derived stem cells: an in vitro and in vivo study.

Rada T, Santos TC, Marques AP, Correlo VM, Frias AM, Castro AG, Neves NM, Gomes ME, Reis RL.

J Tissue Eng Regen Med. 2012 Jan;6(1):1-11. doi: 10.1002/term.388. Epub 2011 Feb 4.

PMID:
21294275
7.

Comparing scaffold-free and fibrin-based adipose-derived stromal cell constructs for adipose tissue engineering: an in vitro and in vivo study.

Verseijden F, Posthumus-van Sluijs SJ, van Neck JW, Hofer SO, Hovius SE, van Osch GJ.

Cell Transplant. 2012;21(10):2283-97. doi: 10.3727/096368912X653129. Epub 2012 Jul 26.

PMID:
22840523
8.

Low-level laser therapy promotes the osteogenic potential of adipose-derived mesenchymal stem cells seeded on an acellular dermal matrix.

Choi K, Kang BJ, Kim H, Lee S, Bae S, Kweon OK, Kim WH.

J Biomed Mater Res B Appl Biomater. 2013 Aug;101(6):919-28. doi: 10.1002/jbm.b.32897. Epub 2013 Mar 26.

PMID:
23529895
9.

Adipose-derived stem cells on hyaluronic acid-derived scaffold: a new horizon in bioengineered cornea.

Espandar L, Bunnell B, Wang GY, Gregory P, McBride C, Moshirfar M.

Arch Ophthalmol. 2012 Feb;130(2):202-8. doi: 10.1001/archopthalmol.2011.1398.

PMID:
22332213
10.

Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration.

Kang SW, Kim JS, Park KS, Cha BH, Shim JH, Kim JY, Cho DW, Rhie JW, Lee SH.

Bone. 2011 Feb;48(2):298-306. doi: 10.1016/j.bone.2010.09.029. Epub 2010 Sep 24.

PMID:
20870047
11.

The evaluation of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells.

Bayati V, Sadeghi Y, Shokrgozar MA, Haghighipour N, Azadmanesh K, Amanzadeh A, Azari S.

Tissue Cell. 2011 Dec;43(6):359-66. doi: 10.1016/j.tice.2011.07.004. Epub 2011 Aug 26.

PMID:
21872289
12.

Myogenic properties of human mesenchymal stem cells derived from three different sources.

de la Garza-Rodea AS, van der Velde-van Dijke I, Boersma H, Gonçalves MA, van Bekkum DW, de Vries AA, Knaän-Shanzer S.

Cell Transplant. 2012;21(1):153-73. doi: 10.3727/096368911X580554. Epub 2011 Jun 7.

PMID:
21669036
13.

Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold.

Liu G, Zhang Y, Liu B, Sun J, Li W, Cui L.

Biomaterials. 2013 Apr;34(11):2655-64. doi: 10.1016/j.biomaterials.2013.01.004. Epub 2013 Jan 21.

PMID:
23343633
14.

The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue.

Meligy FY, Shigemura K, Behnsawy HM, Fujisawa M, Kawabata M, Shirakawa T.

In Vitro Cell Dev Biol Anim. 2012 Apr;48(4):203-15. doi: 10.1007/s11626-012-9488-x. Epub 2012 Mar 7.

PMID:
22396125
15.

Transplantation of human Wharton's jelly-derived mesenchymal stem cells highly expressing TGFβ receptors in a rabbit model of disc degeneration.

Ahn J, Park EM, Kim BJ, Kim JS, Choi B, Lee SH, Han I.

Stem Cell Res Ther. 2015 Oct 2;6:190. doi: 10.1186/s13287-015-0183-1.

16.

Scaffold effects on osteogenic differentiation of equine mesenchymal stem cells: an in vitro comparative study.

Nino-Fong R, McDuffee LA, Esparza Gonzalez BP, Kumar MR, Merschrod S EF, Poduska KM.

Macromol Biosci. 2013 Mar;13(3):348-55. doi: 10.1002/mabi.201200355. Epub 2013 Jan 18.

PMID:
23335515
17.
18.

Cartilage regeneration of adipose-derived stem cells in a hybrid scaffold from fibrin-modified PLGA.

Wei Y, Hu H, Wang H, Wu Y, Deng L, Qi J.

Cell Transplant. 2009;18(2):159-70.

PMID:
19499704
19.

Macrophages regulate smooth muscle differentiation of mesenchymal stem cells via a prostaglandin F₂α-mediated paracrine mechanism.

Lee MJ, Kim MY, Heo SC, Kwon YW, Kim YM, Do EK, Park JH, Lee JS, Han J, Kim JH.

Arterioscler Thromb Vasc Biol. 2012 Nov;32(11):2733-40. doi: 10.1161/ATVBAHA.112.300230. Epub 2012 Sep 6.

20.

Supplemental Content

Support Center