Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 127

1.

Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data.

Hettne KM, Boorsma A, van Dartel DA, Goeman JJ, de Jong E, Piersma AH, Stierum RH, Kleinjans JC, Kors JA.

BMC Med Genomics. 2013 Jan 29;6:2. doi: 10.1186/1755-8794-6-2.

2.

Utilization of a one-dimensional score for surveying chemical-induced changes in expression levels of multiple biomarker gene sets using a large-scale toxicogenomics database.

Kiyosawa N, Shiwaku K, Hirode M, Omura K, Uehara T, Shimizu T, Mizukawa Y, Miyagishima T, Ono A, Nagao T, Urushidani T.

J Toxicol Sci. 2006 Dec;31(5):433-48.

3.

Profiles of Chemical Effects on Cells (pCEC): a toxicogenomics database with a toxicoinformatics system for risk evaluation and toxicity prediction of environmental chemicals.

Sone H, Okura M, Zaha H, Fujibuchi W, Taniguchi T, Akanuma H, Nagano R, Ohsako S, Yonemoto J.

J Toxicol Sci. 2010 Feb;35(1):115-23.

4.

Prediction of compound signature using high density gene expression profiling.

Hamadeh HK, Bushel PR, Jayadev S, DiSorbo O, Bennett L, Li L, Tennant R, Stoll R, Barrett JC, Paules RS, Blanchard K, Afshari CA.

Toxicol Sci. 2002 Jun;67(2):232-40.

PMID:
12011482
5.

Identification of glutathione depletion-responsive genes using phorone-treated rat liver.

Kiyosawa N, Uehara T, Gao W, Omura K, Hirode M, Shimizu T, Mizukawa Y, Ono A, Miyagishima T, Nagao T, Urushidani T.

J Toxicol Sci. 2007 Dec;32(5):469-86.

6.

PPARalpha siRNA-treated expression profiles uncover the causal sufficiency network for compound-induced liver hypertrophy.

Dai X, De Souza AT, Dai H, Lewis DL, Lee CK, Spencer AG, Herweijer H, Hagstrom JE, Linsley PS, Bassett DE, Ulrich RG, He YD.

PLoS Comput Biol. 2007 Mar 2;3(3):e30. Epub 2007 Jan 2.

7.

Gene expression profiling in the liver of CD-1 mice to characterize the hepatotoxicity of triazole fungicides.

Goetz AK, Bao W, Ren H, Schmid JE, Tully DB, Wood C, Rockett JC, Narotsky MG, Sun G, Lambert GR, Thai SF, Wolf DC, Nesnow S, Dix DJ.

Toxicol Appl Pharmacol. 2006 Sep 15;215(3):274-84. Epub 2006 May 26.

PMID:
16730040
8.

Text mining effectively scores and ranks the literature for improving chemical-gene-disease curation at the comparative toxicogenomics database.

Davis AP, Wiegers TC, Johnson RJ, Lay JM, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D, Murphy CG, Mattingly CJ.

PLoS One. 2013 Apr 17;8(4):e58201. doi: 10.1371/journal.pone.0058201. Print 2013.

9.

Predicting environmental chemical factors associated with disease-related gene expression data.

Patel CJ, Butte AJ.

BMC Med Genomics. 2010 May 6;3:17. doi: 10.1186/1755-8794-3-17.

10.

Genomic and proteomic profiling for biomarkers and signature profiles of toxicity.

Merrick BA, Bruno ME.

Curr Opin Mol Ther. 2004 Dec;6(6):600-7. Review.

PMID:
15663324
11.

Literature-based compound profiling: application to toxicogenomics.

Frijters R, Verhoeven S, Alkema W, van Schaik R, Polman J.

Pharmacogenomics. 2007 Nov;8(11):1521-34.

PMID:
18034617
12.

Evaluation of developmental toxicant identification using gene expression profiling in embryonic stem cell differentiation cultures.

van Dartel DA, Pennings JL, de la Fonteyne LJ, Brauers KJ, Claessen S, van Delft JH, Kleinjans JC, Piersma AH.

Toxicol Sci. 2011 Jan;119(1):126-34. doi: 10.1093/toxsci/kfq291. Epub 2010 Oct 8.

PMID:
20935163
13.

Sources of variation in baseline gene expression levels from toxicogenomics study control animals across multiple laboratories.

Boedigheimer MJ, Wolfinger RD, Bass MB, Bushel PR, Chou JW, Cooper M, Corton JC, Fostel J, Hester S, Lee JS, Liu F, Liu J, Qian HR, Quackenbush J, Pettit S, Thompson KL.

BMC Genomics. 2008 Jun 12;9:285. doi: 10.1186/1471-2164-9-285.

14.

Predictive toxicogenomics approaches reveal underlying molecular mechanisms of nongenotoxic carcinogenicity.

Nie AY, McMillian M, Parker JB, Leone A, Bryant S, Yieh L, Bittner A, Nelson J, Carmen A, Wan J, Lord PG.

Mol Carcinog. 2006 Dec;45(12):914-33.

PMID:
16921489
15.

Triazole-induced gene expression changes in the zebrafish embryo.

Hermsen SA, Pronk TE, van den Brandhof EJ, van der Ven LT, Piersma AH.

Reprod Toxicol. 2012 Sep;34(2):216-24. doi: 10.1016/j.reprotox.2012.05.093. Epub 2012 Jun 2.

PMID:
22664267
16.

Comparative analysis of predictive models for nongenotoxic hepatocarcinogenicity using both toxicogenomics and quantitative structure-activity relationships.

Liu Z, Kelly R, Fang H, Ding D, Tong W.

Chem Res Toxicol. 2011 Jul 18;24(7):1062-70. doi: 10.1021/tx2000637. Epub 2011 Jun 20.

PMID:
21627106
17.

Targeted journal curation as a method to improve data currency at the Comparative Toxicogenomics Database.

Davis AP, Johnson RJ, Lennon-Hopkins K, Sciaky D, Rosenstein MC, Wiegers TC, Mattingly CJ.

Database (Oxford). 2012 Dec 6;2012:bas051. doi: 10.1093/database/bas051. Print 2012.

18.

Gene ontology mapping as an unbiased method for identifying molecular pathways and processes affected by toxicant exposure: application to acute effects caused by the rodent non-genotoxic carcinogen diethylhexylphthalate.

Currie RA, Bombail V, Oliver JD, Moore DJ, Lim FL, Gwilliam V, Kimber I, Chipman K, Moggs JG, Orphanides G.

Toxicol Sci. 2005 Aug;86(2):453-69. Epub 2005 May 18.

PMID:
15901911
19.

Toxicogenomic effects common to triazole antifungals and conserved between rats and humans.

Goetz AK, Dix DJ.

Toxicol Appl Pharmacol. 2009 Jul 1;238(1):80-9. doi: 10.1016/j.taap.2009.04.016. Epub 2009 May 3.

PMID:
19409404
20.

Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.

Maruschke M, Reuter D, Koczan D, Hakenberg OW, Thiesen HJ.

BJU Int. 2011 Jul;108(2 Pt 2):E29-35. doi: 10.1111/j.1464-410X.2010.09794.x. Epub 2011 Mar 16.

Supplemental Content

Support Center