Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells.

Müller K, Engesser R, Metzger S, Schulz S, Kämpf MM, Busacker M, Steinberg T, Tomakidi P, Ehrbar M, Nagy F, Timmer J, Zubriggen MD, Weber W.

Nucleic Acids Res. 2013 Apr;41(7):e77. doi: 10.1093/nar/gkt002. Epub 2013 Jan 25.

2.

A red light-controlled synthetic gene expression switch for plant systems.

Müller K, Siegel D, Rodriguez Jahnke F, Gerrer K, Wend S, Decker EL, Reski R, Weber W, Zurbriggen MD.

Mol Biosyst. 2014 Jul;10(7):1679-88. doi: 10.1039/c3mb70579j. Epub 2014 Jan 27.

PMID:
24469598
3.

Control of gene expression using a red- and far-red light-responsive bi-stable toggle switch.

Müller K, Zurbriggen MD, Weber W.

Nat Protoc. 2014 Mar;9(3):622-32. doi: 10.1038/nprot.2014.038. Epub 2014 Feb 20.

PMID:
24556785
4.

Optogenetics in Plants: Red/Far-Red Light Control of Gene Expression.

Ochoa-Fernandez R, Samodelov SL, Brandl SM, Wehinger E, Müller K, Weber W, Zurbriggen MD.

Methods Mol Biol. 2016;1408:125-39. doi: 10.1007/978-1-4939-3512-3_9. Erratum in: Methods Mol Biol. 2016;1408:E1.

PMID:
26965120
5.

Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.

Gomez EJ, Gerhardt K, Judd J, Tabor JJ, Suh J.

ACS Nano. 2016 Jan 26;10(1):225-37. doi: 10.1021/acsnano.5b05558. Epub 2015 Nov 30.

PMID:
26618393
6.

Multi-chromatic control of mammalian gene expression and signaling.

Müller K, Engesser R, Schulz S, Steinberg T, Tomakidi P, Weber CC, Ulm R, Timmer J, Zurbriggen MD, Weber W.

Nucleic Acids Res. 2013 Jul;41(12):e124. doi: 10.1093/nar/gkt340. Epub 2013 Apr 26.

7.
8.

The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels.

Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM, Ecker JR, Quail PH.

Plant Cell. 2008 Feb;20(2):337-52. doi: 10.1105/tpc.107.052142. Epub 2008 Feb 5.

9.

Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation.

Shen Y, Khanna R, Carle CM, Quail PH.

Plant Physiol. 2007 Nov;145(3):1043-51. Epub 2007 Sep 7.

10.
11.

Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis.

Medzihradszky M, Bindics J, Ádám É, Viczián A, Klement É, Lorrain S, Gyula P, Mérai Z, Fankhauser C, Medzihradszky KF, Kunkel T, Schäfer E, Nagy F.

Plant Cell. 2013 Feb;25(2):535-44. doi: 10.1105/tpc.112.106898. Epub 2013 Feb 1.

12.

Blue light induces degradation of the negative regulator phytochrome interacting factor 1 to promote photomorphogenic development of Arabidopsis seedlings.

Castillon A, Shen H, Huq E.

Genetics. 2009 May;182(1):161-71. doi: 10.1534/genetics.108.099887. Epub 2009 Mar 2.

13.

A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA.

Reymond MC, Brunoud G, Chauvet A, Martínez-Garcia JF, Martin-Magniette ML, Monéger F, Scutt CP.

Plant Cell. 2012 Jul;24(7):2812-25. doi: 10.1105/tpc.112.097915. Epub 2012 Jul 31.

14.

Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis.

Soy J, Leivar P, González-Schain N, Sentandreu M, Prat S, Quail PH, Monte E.

Plant J. 2012 Aug;71(3):390-401. doi: 10.1111/j.1365-313X.2012.04992.x. Epub 2012 Jun 11.

15.

Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades.

Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J, Ballaré CL.

Plant J. 2011 Jul;67(2):195-207. doi: 10.1111/j.1365-313X.2011.04598.x. Epub 2011 May 25.

16.

Spatiotemporal control of cell signalling using a light-switchable protein interaction.

Levskaya A, Weiner OD, Lim WA, Voigt CA.

Nature. 2009 Oct 15;461(7266):997-1001. doi: 10.1038/nature08446. Epub 2009 Sep 13.

17.

Optical control of mammalian endogenous transcription and epigenetic states.

Konermann S, Brigham MD, Trevino A, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F.

Nature. 2013 Aug 22;500(7463):472-476. doi: 10.1038/nature12466. Epub 2013 Aug 23.

18.

Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana.

Yamashino T, Nomoto Y, Lorrain S, Miyachi M, Ito S, Nakamichi N, Fankhauser C, Mizuno T.

Plant Signal Behav. 2013 Mar;8(3):e23390. doi: 10.4161/psb.23390. Epub 2013 Jan 8.

19.

Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light.

Lorrain S, Trevisan M, Pradervand S, Fankhauser C.

Plant J. 2009 Nov;60(3):449-61. doi: 10.1111/j.1365-313X.2009.03971.x. Epub 2009 Jul 8. Erratum in: Plant J. 2010 Feb 1;61(3):543.

20.

Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis.

Ni W, Xu SL, Chalkley RJ, Pham TN, Guan S, Maltby DA, Burlingame AL, Wang ZY, Quail PH.

Plant Cell. 2013 Jul;25(7):2679-98. doi: 10.1105/tpc.113.112342. Epub 2013 Jul 31.

Supplemental Content

Support Center