Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Distinct protein classes in human red cell proteome revealed by similarity of phylogenetic profiles.

Szczesny P, Mykowiecka A, Pawłowski K, Grynberg M.

PLoS One. 2013;8(1):e54471. doi: 10.1371/journal.pone.0054471. Epub 2013 Jan 21.

2.

[Foundations of the new phylogenetics].

Pavlinov IIa.

Zh Obshch Biol. 2004 Jul-Aug;65(4):334-66. Russian.

PMID:
15490579
3.

Projection of gene-protein networks to the functional space of the proteome and its application to analysis of organism complexity.

Kanapin AA, Mulder N, Kuznetsov VA.

BMC Genomics. 2010 Feb 10;11 Suppl 1:S4. doi: 10.1186/1471-2164-11-S1-S4.

4.

Proteome-wide analysis of protein function composition reveals the clustering and phylogenetic properties of organisms.

Ling L, Wang J, Cui Y, Li W, Chen R.

Mol Phylogenet Evol. 2002 Oct;25(1):101-11.

PMID:
12383754
5.

Origin of multicellular eukaryotes - insights from proteome comparisons.

Aravind L, Subramanian G.

Curr Opin Genet Dev. 1999 Dec;9(6):688-94. Review.

PMID:
10607613
6.
7.

The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.

Cavalier-Smith T.

Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):7-76. Review.

PMID:
11837318
8.

The origins of modern proteomes.

Kurland CG, Canbäck B, Berg OG.

Biochimie. 2007 Dec;89(12):1454-63. Epub 2007 Sep 15.

PMID:
17949885
9.

Stress genes and proteins in the archaea.

Macario AJ, Lange M, Ahring BK, Conway de Macario E.

Microbiol Mol Biol Rev. 1999 Dec;63(4):923-67, table of contents. Review.

10.

A global gene evolution analysis on Vibrionaceae family using phylogenetic profile.

Vitulo N, Vezzi A, Romualdi C, Campanaro S, Valle G.

BMC Bioinformatics. 2007 Mar 8;8 Suppl 1:S23.

11.

Deep-coverage rhesus red blood cell proteome: a first comparison with the human and mouse red blood cell.

Pasini EM, Kirkegaard M, Mortensen P, Mann M, Thomas AW.

Blood Transfus. 2010 Jun;8 Suppl 3:s126-39. doi: 10.2450/2010.020S.

12.

A molecular timescale of eukaryote evolution and the rise of complex multicellular life.

Hedges SB, Blair JE, Venturi ML, Shoe JL.

BMC Evol Biol. 2004 Jan 28;4:2.

13.

Molecular evolution of the polyamine oxidase gene family in Metazoa.

Polticelli F, Salvi D, Mariottini P, Amendola R, Cervelli M.

BMC Evol Biol. 2012 Jun 20;12:90. doi: 10.1186/1471-2148-12-90.

14.
15.

Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants.

Gawryluk RM, Chisholm KA, Pinto DM, Gray MW.

J Proteomics. 2014 Sep 23;109:400-16. doi: 10.1016/j.jprot.2014.07.005. Epub 2014 Jul 12.

PMID:
25026440
16.

Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer.

Frickey T, Kannenberg E.

Environ Microbiol. 2009 May;11(5):1224-41. doi: 10.1111/j.1462-2920.2008.01851.x. Epub 2009 Jan 15.

PMID:
19207562
17.
18.
19.

A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.

Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Rogozin IB, Smirnov S, Sorokin AV, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA.

Genome Biol. 2004;5(2):R7. Epub 2004 Jan 15.

20.

Stratification of co-evolving genomic groups using ranked phylogenetic profiles.

Freilich S, Goldovsky L, Gottlieb A, Blanc E, Tsoka S, Ouzounis CA.

BMC Bioinformatics. 2009 Oct 27;10:355. doi: 10.1186/1471-2105-10-355.

Supplemental Content

Support Center