Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 146

1.

Photocurrent enhancement for Ti-doped Fe₂O₃ thin film photoanodes by an in situ solid-state reaction method.

Miao C, Shi T, Xu G, Ji S, Ye C.

ACS Appl Mater Interfaces. 2013 Feb;5(4):1310-6. doi: 10.1021/am302575p. Epub 2013 Feb 6.

PMID:
23347501
2.

Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.

Wang D, Chen H, Chang G, Lin X, Zhang Y, Aldalbahi A, Peng C, Wang J, Fan C.

ACS Appl Mater Interfaces. 2015 Jul 1;7(25):14072-8. doi: 10.1021/acsami.5b03298. Epub 2015 Jun 19.

PMID:
26052922
3.

Facile synthesis of highly photoactive α-Fe₂O₃-based films for water oxidation.

Wang G, Ling Y, Wheeler DA, George KE, Horsley K, Heske C, Zhang JZ, Li Y.

Nano Lett. 2011 Aug 10;11(8):3503-9. doi: 10.1021/nl202316j. Epub 2011 Jul 25.

PMID:
21766825
4.

Micro-nano-structured Fe₂O₃:Ti/ZnFe₂O₄ heterojunction films for water oxidation.

Miao C, Ji S, Xu G, Liu G, Zhang L, Ye C.

ACS Appl Mater Interfaces. 2012 Aug;4(8):4428-33. doi: 10.1021/am3011466. Epub 2012 Jul 25.

PMID:
22803694
5.

The electrical conductivity of thin film donor doped hematite: from insulator to semiconductor by defect modulation.

Engel J, Tuller HL.

Phys Chem Chem Phys. 2014 Jun 21;16(23):11374-80. doi: 10.1039/c4cp01144a.

PMID:
24797819
6.

Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be(2+) as co-dopant.

Annamalai A, Lee HH, Choi SH, Lee SY, Gracia-Espino E, Subramanian A, Park J, Kong KJ, Jang JS.

Sci Rep. 2016 Mar 23;6:23183. doi: 10.1038/srep23183.

7.

Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays.

Shen S, Guo P, Wheeler DA, Jiang J, Lindley SA, Kronawitter CX, Zhang JZ, Guo L, Mao SS.

Nanoscale. 2013 Oct 21;5(20):9867-74. doi: 10.1039/c3nr03245k.

PMID:
23974247
8.

Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.

Wang P, Wang D, Lin J, Li X, Peng C, Gao X, Huang Q, Wang J, Xu H, Fan C.

ACS Appl Mater Interfaces. 2012 Apr;4(4):2295-302. doi: 10.1021/am300395p. Epub 2012 Apr 3.

PMID:
22452535
9.

In situ preparation of a Ti³⁺ self-doped TiO₂ film with enhanced activity as photoanode by N₂H₄ reduction.

Mao C, Zuo F, Hou Y, Bu X, Feng P.

Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10485-9. doi: 10.1002/anie.201406017. Epub 2014 Aug 1.

PMID:
25088748
10.

The role of the domain size and titanium dopant in nanocrystalline hematite thin films for water photolysis.

Yan D, Tao J, Kisslinger K, Cen J, Wu Q, Orlov A, Liu M.

Nanoscale. 2015 Nov 28;7(44):18515-23. doi: 10.1039/c5nr05894e. Epub 2015 Oct 26.

PMID:
26499938
11.

Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature.

Cho ES, Kang MJ, Kang YS.

Phys Chem Chem Phys. 2015 Jun 28;17(24):16145-50. doi: 10.1039/c5cp01823d. Epub 2015 Jun 2.

PMID:
26032403
12.

Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.

Fu Y, Dong CL, Zhou Z, Lee WY, Chen J, Guo P, Zhao L, Shen S.

Phys Chem Chem Phys. 2016 Feb 7;18(5):3846-53. doi: 10.1039/c5cp07479g. Epub 2016 Jan 14.

PMID:
26763113
13.

Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.

Steier L, Luo J, Schreier M, Mayer MT, Sajavaara T, Grätzel M.

ACS Nano. 2015 Dec 22;9(12):11775-83. doi: 10.1021/acsnano.5b03694. Epub 2015 Nov 16.

PMID:
26516784
14.

Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.

Zhang T, Zhu Z, Chen H, Bai Y, Xiao S, Zheng X, Xue Q, Yang S.

Nanoscale. 2015 Feb 21;7(7):2933-40. doi: 10.1039/c4nr07024k. Erratum in: Nanoscale. 2015 Sep 7;7(33):14121.

PMID:
25587830
15.

Gradient FeO(x)(PO4)(y) layer on hematite photoanodes: novel structure for efficient light-driven water oxidation.

Zhang Y, Zhou Z, Chen C, Che Y, Ji H, Ma W, Zhang J, Song D, Zhao J.

ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12844-51. doi: 10.1021/am502821d. Epub 2014 Jul 28.

PMID:
25068504
16.

Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.

Parmar KP, Kang HJ, Bist A, Dua P, Jang JS, Lee JS.

ChemSusChem. 2012 Oct;5(10):1926-34. doi: 10.1002/cssc.201200254. Epub 2012 Aug 27.

PMID:
22927058
17.

Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion.

Xu M, Da P, Wu H, Zhao D, Zheng G.

Nano Lett. 2012 Mar 14;12(3):1503-8. doi: 10.1021/nl2042968. Epub 2012 Feb 28.

PMID:
22364360
18.

A Titanium-Doped SiOx Passivation Layer for Greatly Enhanced Performance of a Hematite-Based Photoelectrochemical System.

Ahn HJ, Yoon KY, Kwak MJ, Jang JH.

Angew Chem Int Ed Engl. 2016 Aug 16;55(34):9922-6. doi: 10.1002/anie.201603666. Epub 2016 Jun 30.

PMID:
27358249
19.

A new hematite photoanode doping strategy for solar water splitting: oxygen vacancy generation.

Yang TY, Kang HY, Sim U, Lee YJ, Lee JH, Koo B, Nam KT, Joo YC.

Phys Chem Chem Phys. 2013 Feb 14;15(6):2117-24. doi: 10.1039/c2cp44352j. Epub 2013 Jan 4.

PMID:
23288103
20.

Photoelectrochemical Behavior of Electrophoretically Deposited Hematite Thin Films Modified with Ti(IV).

Dalle Carbonare N, Boaretto R, Caramori S, Argazzi R, Dal Colle M, Pasquini L, Bertoncello R, Marelli M, Evangelisti C, Bignozzi CA.

Molecules. 2016 Jul 20;21(7). pii: E942. doi: 10.3390/molecules21070942.

Supplemental Content

Support Center