Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems.

Albrethsen J, Agner J, Piersma SR, Højrup P, Pham TV, Weldingh K, Jimenez CR, Andersen P, Rosenkrands I.

Mol Cell Proteomics. 2013 May;12(5):1180-91. doi: 10.1074/mcp.M112.018846. Epub 2013 Jan 23.

2.

Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation.

Gopinath V, Raghunandanan S, Gomez RL, Jose L, Surendran A, Ramachandran R, Pushparajan AR, Mundayoor S, Jaleel A, Kumar RA.

Mol Cell Proteomics. 2015 Aug;14(8):2160-76. doi: 10.1074/mcp.M115.051151. Epub 2015 May 29.

3.

Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling.

Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K.

Mol Microbiol. 2002 Feb;43(3):717-31.

4.

Characterization of the Mycobacterium tuberculosis proteome by liquid chromatography mass spectrometry-based proteomics techniques: a comprehensive resource for tuberculosis research.

Bell C, Smith GT, Sweredoski MJ, Hess S.

J Proteome Res. 2012 Jan 1;11(1):119-30. doi: 10.1021/pr2007939. Epub 2011 Nov 30.

PMID:
22053987
5.

Protein kinase G confers survival advantage to Mycobacterium tuberculosis during latency-like conditions.

Khan MZ, Bhaskar A, Upadhyay S, Kumari P, Rajmani RS, Jain P, Singh A, Kumar D, Bhavesh NS, Nandicoori VK.

J Biol Chem. 2017 Sep 29;292(39):16093-16108. doi: 10.1074/jbc.M117.797563. Epub 2017 Aug 18.

PMID:
28821621
6.

Analysis of differentially expressed proteins in late-stationary growth phase of Mycobacterium tuberculosis H37Rv.

Ang KC, Ibrahim P, Gam LH.

Biotechnol Appl Biochem. 2014 Mar-Apr;61(2):153-64. doi: 10.1002/bab.1137. Epub 2014 Mar 24.

PMID:
23826872
7.

[The adaptation of mycoplasmas to stress conditions: features of proteome shift in Mycoplasma hominis PG37 under starvation and low temperature].

Chernov VM, Chernova OA, Baranova NB, Gorshkov OV, Medvedeva ES, Shaĭmardanova GF.

Mol Biol (Mosk). 2011 Sep-Oct;45(5):914-23. Russian.

PMID:
22393789
8.

Proteomic profile of Mycobacterium tuberculosis after eupomatenoid-5 induction reveals potential drug targets.

Ghiraldi-Lopes LD, Campanerut-Sá PA, Meneguello JE, Seixas FA, Lopes-Ortiz MA, Scodro RB, Pires CT, da Silva RZ, Siqueira VL, Nakamura CV, Cardoso RF.

Future Microbiol. 2017 Aug;12:867-879. doi: 10.2217/fmb-2017-0023. Epub 2017 Jul 7.

PMID:
28686056
9.

A Serine/threonine kinase PknL, is involved in the adaptive response of Mycobacterium tuberculosis.

Refaya AK, Sharma D, Kumar V, Bisht D, Narayanan S.

Microbiol Res. 2016 Sep;190:1-11. doi: 10.1016/j.micres.2016.02.005. Epub 2016 May 7.

10.

Proteome and phosphoproteome analysis of the serine/threonine protein kinase E mutant of Mycobacterium tuberculosis.

Parandhaman DK, Sharma P, Bisht D, Narayanan S.

Life Sci. 2014 Jul 30;109(2):116-26. doi: 10.1016/j.lfs.2014.06.013. Epub 2014 Jun 24.

PMID:
24972353
11.

Secretome profile analysis of hypervirulent Mycobacterium tuberculosis CPT31 reveals increased production of EsxB and proteins involved in adaptation to intracellular lifestyle.

Vargas-Romero F, Guitierrez-Najera N, Mendoza-Hernández G, Ortega-Bernal D, Hernández-Pando R, Castañón-Arreola M.

Pathog Dis. 2016 Mar;74(2). pii: ftv127. doi: 10.1093/femspd/ftv127. Epub 2016 Jan 4.

PMID:
26733498
12.

Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis.

Lee J, Kim SH, Choi DS, Lee JS, Kim DK, Go G, Park SM, Kim SH, Shin JH, Chang CL, Gho YS.

Proteomics. 2015 Oct;15(19):3331-7. doi: 10.1002/pmic.201500037. Epub 2015 Aug 19.

PMID:
26201501
13.

Survival during long-term starvation: global proteomics analysis of Geobacter sulfurreducens under prolonged electron-acceptor limitation.

Bansal R, Helmus RA, Stanley BA, Zhu J, Liermann LJ, Brantley SL, Tien M.

J Proteome Res. 2013 Oct 4;12(10):4316-26. doi: 10.1021/pr400266m. Epub 2013 Sep 9.

PMID:
23980722
14.

Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis.

Xie L, Wang X, Zeng J, Zhou M, Duan X, Li Q, Zhang Z, Luo H, Pang L, Li W, Liao G, Yu X, Li Y, Huang H, Xie J.

Int J Biochem Cell Biol. 2015 Feb;59:193-202. doi: 10.1016/j.biocel.2014.11.010. Epub 2014 Nov 29.

PMID:
25456444
15.

Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics.

Sinha S, Kosalai K, Arora S, Namane A, Sharma P, Gaikwad AN, Brodin P, Cole ST.

Microbiology. 2005 Jul;151(Pt 7):2411-9.

PMID:
16000731
16.

Proteome-wide Lysine Glutarylation Profiling of the Mycobacterium tuberculosis H37Rv.

Xie L, Wang G, Yu Z, Zhou M, Li Q, Huang H, Xie J.

J Proteome Res. 2016 Apr 1;15(4):1379-85. doi: 10.1021/acs.jproteome.5b00917. Epub 2016 Feb 25.

PMID:
26903315
17.

Acetylome analysis reveals diverse functions of lysine acetylation in Mycobacterium tuberculosis.

Liu F, Yang M, Wang X, Yang S, Gu J, Zhou J, Zhang XE, Deng J, Ge F.

Mol Cell Proteomics. 2014 Dec;13(12):3352-66. doi: 10.1074/mcp.M114.041962. Epub 2014 Sep 1.

18.

Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv.

Målen H, Berven FS, Fladmark KE, Wiker HG.

Proteomics. 2007 May;7(10):1702-18.

PMID:
17443846
19.

In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism.

Kuntumalla S, Zhang Q, Braisted JC, Fleischmann RD, Peterson SN, Donohue-Rolfe A, Tzipori S, Pieper R.

BMC Microbiol. 2011 Jun 24;11:147. doi: 10.1186/1471-2180-11-147.

20.

Transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis.

Maciag A, Piazza A, Riccardi G, Milano A.

BMC Microbiol. 2009 Mar 4;9:48. doi: 10.1186/1471-2180-9-48.

Supplemental Content

Support Center